Python 数据可视化神器Pyecharts绘制图像练习

 更新时间:2022年02月28日 11:35:25   作者:代码输入中...  
这篇文章主要介绍了Python 数据可视化神器Pyecharts绘制图像练习,绘制的图形有柱状图、饼状图、箱型图、折线图、雷达图等多种图像,需要的小伙伴可以参考一下

前言:

Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行。

作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大。那么,能否在 Python 中也能用到 Echarts 的功能呢?寻找中惊喜地发现了 pyecharts,只需在python中安装该模块即可使用。

安装:

常用的pip安装包一键安装pyecharts

 pyecharts安装命令:

ython -m pip install pyecharts

Python + pyecharts具体应用

结合工作中的项目数据,我选择了 test 项目需求中 hotel_code_new 为 CNSZVS_002,CWSWS_003 对应2019年12个月指标为 RNs 的数据做可视化展示与分析。

1.Hive数据库查询sql

hive_sql内容如下:

# sql中所使用的部分语法为hive sql中常规的语法,与mysql有所不同,请注意。
select rrrd1.hotel_code_new as hotel_code_new
      ,dda.natural_date as natural_date
      ,nvl(rrrd.room_nights, 0) as room_nights
 from ( select distinct substr(natural_dt,1,7) as natural_date 
    from dws.dws_test_date_calendar
    where dt_year='2019'
        )dda
        left join 
         (select 'CNSZVS_002' hotel_code_new
            UNION all select  'CWSWS_003' hotel_code_new
      )rrrd1
        left join
         (select  hotel_code_new
                    ,substr(stay_date,1,7) as stay_date
                    ,sum(number_of_room_nights) as room_nights
                from dwm.dwm_test_resvs_rom_daily_df
                where dt='2021-10-24'
                and hotel_code_new in(CNSZVS_002', 'CWSWS_003')
                    and resv_status in('CHECKEDSSSIN','CHECKEDSSSOUT')
                    and substr(stay_date,0,4) = '2019' 
                    group by hotel_code_new,substr(stay_date,1,7)
        )rrrd 
        on dda.natural_date = rrrd.stay_date 
        and rrrd1.hotel_code_new=rrrd.hotel_code_new
        order by rrrd.hotel_code_new;

2.Python代码实现—柱状图

from impala.dbapi import connect
import warnings

#数据仓库数据获取准备
def hive_connect(sql):
    warnings.filterwarnings('ignore')
    config_hive_beta = {
        'host': '10.7.0.12',  #hive的host地址
        'port': 10000,    #hive的端口号
        'user': 'hive',    #hive的username
        'password': 'hive',    #hive的password
        'database': 'tmp',     #hive中需要查询的数据库名
        'auth_mechanism': 'PLAIN' #hive的hive-site.xml配置文件中获取
    }
    conn = connect(**config_hive_beta)
    cursor = conn.cursor()
    cursor.execute(sql)
    hive_all_data = cursor.fetchall()
    return hive_all_data


# all_data = hive_connect(hive_sql)
# 通过调用hive_connect方法获取到的数据库查询结果数据如all_data列表所示
all_data = [('CNSZVS_002', '2019-01', 0), ('CNSZVS_002', '2019-02', 0), ('CNSZVS_002', '2019-03', 0),
            ('CNSZVS_002', '2019-04', 0), ('CNSZVS_002', '2019-05', 0), ('CNSZVS_002', '2019-06', 2353),
            ('CNSZVS_002', '2019-07', 2939), ('CNSZVS_002', '2019-08', 5148), ('CNSZVS_002', '2019-09', 3850),
            ('CNSZVS_002', '2019-10', 4973), ('CNSZVS_002', '2019-11', 5467), ('CNSZVS_002', '2019-12', 4742),
            ('CWSWS_003', '2019-01', 5914), ('CWSWS_003', '2019-02', 4434), ('CWSWS_003', '2019-03', 6003),
            ('CWSWS_003', '2019-04', 6611), ('CWSWS_003', '2019-05', 6586), ('CWSWS_003', '2019-06', 5840),
            ('CWSWS_003', '2019-07', 6624), ('CWSWS_003', '2019-08', 7001), ('CWSWS_003', '2019-09', 5792),
            ('CWSWS_003', '2019-10', 6898), ('CWSWS_003', '2019-11', 6944), ('CWSWS_003', '2019-12', 5404)]

# 从pyecharts模块导入柱状图-Bar
from pyecharts import Bar
# 设置横轴行名,这里使用12个月份的英文简称
columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
# 分别新建2个空list用于存储每个月份对应的RNs的值
CNSZVS_002 = []
CWSWS_003 = []

for i in all_data:
    if i[0] == 'CNSZVS_002':
        CNSZVS_002.append(i[2])
    elif i[0] == 'CWSWS_003':
        CWSWS_003.append(i[2])
    else:
        pass
# 设置柱状图的主标题与副标题
bar = Bar("柱状图", "Test需求—2019年的RNs")
# 添加柱状图的数据及配置项-求平均值、最大值、最小值
bar.add("CNSZVS_002", columns, CNSZVS_002, mark_line=["average"], mark_point=["max", "min"])
bar.add("CWSWS_003", columns, CWSWS_003, mark_line=["average"], mark_point=["max", "min"])
# 在本py文件同级目录下生成名为render.html的本地文件(默认为.html文件)
bar.render()
# 也可设置成指定的路径用于保存html文件
#bar.render(r"D:bar_render.html")

柱状效果图展示:

生成的柱状效果图是html格式的,可以在浏览器中打开查看,在浏览器中支持下载成图片格式到本地,并且点击图例即可置灰对应的图例,同时隐藏图例对应的柱状图数据,

如下图所示:

3.Python代码实现—饼状图

注意:数据准备部分的代码与柱状图一样,这里只展示饼状图特有的代码

# 从pyecharts模块中导入饼图Pie
from pyecharts import Pie
# 设置主标题与副标题,标题设置居中,设置宽度为1000
pie = Pie("饼状图", "Test需求—2019年的RNs", title_pos='left', width=1000)
# 使用add导入数据,设置坐标位置为【20,50】,上方的colums选项取消显示
pie.add("CNSZVS_002", columns, CNSZVS_002, center=[20, 50], is_legend_show=True)
# 使用add导入数据,设置坐标位置为【75,50】,上方的colums选项正常显示
pie.add("CWSWS_003", columns, CWSWS_003, center=[75, 50], is_legend_show=False, is_label_show=True)
# 保存图表
pie.render()

饼状效果图展示——隐藏所占百分比

饼状效果图展示——展示所占百分比

4.Python代码实现—箱型图

# 从pyecharts模块导入箱型图Boxplot
from pyecharts import Boxplot
boxplot = Boxplot("箱型图", "Test需求—2019年的RNs")
x_axis = ['CNSZVS_002', 'CWSWS_003']
y_axis = [CNSZVS_002, CWSWS_003]
# prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]
yaxis = boxplot.prepare_data(y_axis)
boxplot.add("2019年RNs统计", x_axis, yaxis)
boxplot.render()

箱型图效果展示:

5.Python代码实现—折线图

from pyecharts import Line
line = Line("折线图", "Test需求—2019年的RNs")
# is_label_show属性是设置上方数据是否显示
line.add("CNSZVS_002", columns, CNSZVS_002, is_label_show=True)
line.add("CWSWS_003", columns, CWSWS_003, is_label_show=True)
line.render()

折线图效果展示:

6.Python代码实现—雷达图

from pyecharts import Radar
radar = Radar("雷达图", "Test需求—2019年的RNs")
# 由于雷达图传入的数据得为多维数据,需要将list再进行list转换一次
CNSZVS_002 = [CNSZVS_002]
CWSWS_003 = [CWSWS_003]
# 设置column的最大值,为了雷达图更为直观,这里的月份最大值设置依据真实数据的值来设置,因此各个月份有所不同
schema_diff = [
    ("Jan", 7000), ("Feb", 5000), ("Mar", 6500),
    ("Apr", 7000), ("May", 7000), ("Jun", 6200),
    ("Jul", 6800), ("Aug", 7200), ("Sep", 6000),
    ("Oct", 7300), ("Nov", 7500), ("Dec", 6000)
]
# 传入坐标
radar.config(schema_diff)
radar.add("CNSZVS_002", CNSZVS_002)
# 一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
radar.add("CWSWS_003", CWSWS_003, item_color="#1C86EE")
radar.render()

雷达效果图展示:

7.Python代码实现—散点图

from pyecharts import Scatter
scatter = Scatter("散点图", "Test需求—2019年的RNs")
# xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置
scatter.add("CWSWS_003&CNSZVS_002 RNs的散点分布", CNSZVS_002, CWSWS_003, xaxis_name="CNSZVS_002", yaxis_name="CWSWS_003", yaxis_name_gap=40)
scatter.render()

散点图效果展示:

总结:

  • 准备符合要求的数据及其格式
  • 导入对应图表所使用的包
  • add()方法:主要方法,用于添加图表的数据和设置各种配置项
  • render()方法:用于保存生成的图表

 到此这篇关于Python 数据可视化神器Pyecharts绘制图像练习的文章就介绍到这了,更多相关Python 数据可视化神器Pyecharts内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 如何使用Python VTK绘制线条

    如何使用Python VTK绘制线条

    这篇文章主要介绍了如何使用Python-VTK绘制线条,主要绘制直线和曲线,下面文章详细实现过程需要的小伙伴可以参考一下
    2022-04-04
  • Python使用Flask框架同时上传多个文件的方法

    Python使用Flask框架同时上传多个文件的方法

    这篇文章主要介绍了Python使用Flask框架同时上传多个文件的方法,实例分析了Python中Flask框架操作文件实现上传的技巧,需要的朋友可以参考下
    2015-03-03
  • Python中列表复制的常用方法解析

    Python中列表复制的常用方法解析

    在Python编程中,经常需要对列表进行复制或克隆操作,以便保护原始数据或创建独立的副本,本文将详细介绍如何在Python中进行列表克隆,以及如何选择合适的方法来保护数据,希望对大家有所帮助
    2024-02-02
  • TensorFlow的自动求导原理分析

    TensorFlow的自动求导原理分析

    这篇文章主要介绍了TensorFlow的自动求导原理分析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Django实现WebSocket在线聊天室功能(channels库)

    Django实现WebSocket在线聊天室功能(channels库)

    本文基于channels库Django实现WebSocket在线聊天室功能,包括安装及创建django项目的全过程,通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • python中pandas操作apply返回多列的实现

    python中pandas操作apply返回多列的实现

    本文主要介绍了python中pandas操作apply返回多列的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • python reduce 函数使用详解

    python reduce 函数使用详解

    reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,今天我们就来详细探讨下
    2017-12-12
  • Python日期操作学习笔记

    Python日期操作学习笔记

    字符串是使用静态的方式进行存储,只能读而不能直接修改字符内容。特别将一堆对字符串并在一起的时候,虽然可以直接相加,听说这样的速度奇慢,只有用其它函数的方式进行,好在也不太麻烦。
    2008-10-10
  • python3通过gevent.pool限制协程并发数量的实现方法

    python3通过gevent.pool限制协程并发数量的实现方法

    这篇文章主要介绍了python3通过gevent.pool限制协程并发数量的实现方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • python深度学习tensorflow入门基础教程示例

    python深度学习tensorflow入门基础教程示例

    这篇文章主要为大家介绍了python深度学习tensorflow入门基础教程示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06

最新评论