Spring Cloud Sleuth 和 Zipkin 进行分布式跟踪使用小结

 更新时间:2022年03月03日 10:29:18   作者:MicroStone123  
分布式跟踪是一种机制,我们可以使用它跟踪整个分布式系统中的特定请求,分布式跟踪允许您跟踪分布式系统中的请求,本文给大家介绍Spring Cloud Sleuth 和 Zipkin 进行分布式跟踪使用小结,感兴趣的朋友一起看看吧

分布式跟踪允许您跟踪分布式系统中的请求。本文通过了解如何使用 Spring Cloud Sleuth 和 Zipkin 来做到这一点。

对于一个做所有事情的大型应用程序(我们通常将其称为单体应用程序),跟踪应用程序内的传入请求很容易。我们可以跟踪日志,然后弄清楚请求是如何处理的。除了应用程序日志本身之外,我们无需查看其他任何内容。

随着时间的推移,单体应用程序变得难以扩展,难以处理大量请求以及随着代码库规模的不断扩大向客户提供新功能。这导致将单体架构分解为微服务,这有助于扩展单个组件并有助于更快地交付。

但并非所有闪耀的都是黄金,对吧?微服务也是如此。我们将整个单体系统拆分为微服务,由一组本地函数调用处理的每个请求现在都被调用一组分布式服务所取代。这样一来,我们就失去了追踪在单体应用中很容易完成的请求之类的事情。现在,要跟踪每个请求,我们必须查看每个服务的日志,并且很难关联。

因此,在分布式系统的情况下,分布式跟踪的概念有助于跟踪请求。

什么是分布式跟踪?

分布式跟踪是一种机制,我们可以使用它跟踪整个分布式系统中的特定请求。它允许我们跟踪请求如何从一个系统进展到另一个系统,从而完成用户的请求。

分布式跟踪的关键概念

分布式跟踪包含两个主要概念:

  • 跟踪 ID
  • 跨度编号

跟踪 id 用于跟踪传入请求并在所有组合服务中跟踪它以满足请求。Span id 跨越服务调用以跟踪接收到的每个请求和发出的响应。

让我们看一下图表。

传入的请求没有任何跟踪 ID。拦截调用的第一个服务会生成跟踪 ID“ID1”及其跨度 ID“A”。span id“B”涵盖了从服务器一的客户端发出请求到服务器二接收、处理并发出响应的时间。

带有 Spring Cloud Sleuth 的 Spring Boot 示例

让我们创建一个集成了 Spring Cloud Sleuth 的应用程序。首先,让我们访问https://start.spring.io/并使用依赖项“Spring Web”和“Spring Cloud Sleuth”创建一个应用程序。

现在让我们创建一个带有两个请求映射的简单控制器。

public class Controller {

 private static final Logger logger = LoggerFactory.getLogger(Controller.class);
 private RestTemplate restTemplate;
 @Value("${spring.application.name}")
 private String applicationName;
 public Controller(RestTemplate restTemplate) {
    this.restTemplate = restTemplate;
 }
 @GetMapping("/path1")
 public ResponseEntity path1() {
  logger.info("Request at {} for request /path1 ", applicationName);
  String response = restTemplate.getForObject("http://localhost:8090/service/path2", String.class);
  return ResponseEntity.ok("response from /path1 + "+ response);
@GetMapping("/path2")
public ResponseEntity path2(){
  logger.info("Request at {} at /path2", applicationName);
  return ResponseEntity.ok("response from /path2 ");
}

在这里,我创建了两条路径,Path2调用Path2固定端口 8090。这里的想法是运行同一应用程序的两个单独实例。

现在为了允许侦探将标头注入到传出请求中,我们需要将 RestTemplate 作为 bean 注入,而不是直接初始化它。这将允许侦探向 RestTemplate 添加一个拦截器,以将带有跟踪 id 和跨度 id 的标头注入到传出请求中。

@Bean
   public RestTemplate restTemplate(RestTemplateBuilder builder) {
      return builder.build();
   }

现在,让我们启动两个实例。为此,首先,构建应用程序,mvn clean verify然后运行以下命令来启动“服务 1”。

java -jar \target/Distributed-Service-0.0.1-SNAPSHOT.jar \--spring.application.name=Service-1 \--server.port=8080

然后在不同的终端上运行“服务 2”,如下所示:

java -jar \target/Distributed-Service-0.0.1-SNAPSHOT.jar \--spring.application.name=Service-2 \--server.port=8090

应用程序启动后,调用“Service 1”,/path2如下所示:

curl -i http://localhost:8080/service/path1

现在让我们看看“服务1”的日志。

INFO [Service-1,222f3b00a283c75c,222f3b00a283c75c] 41114 --- [nio-8080-exec-1] c.a.p.distributedservice.Controller      : Incoming request at Service-1 for request /path1

日志包含方括号,其中包含三个部分 [Service Name, Trace Id, Span Id]。对于第一个传入的请求,由于没有传入的trace id,span id 与trace id 相同。

查看“服务 2”的​日志,我们看到我们为此请求有一个新的 span id。

INFO [Service-2,222f3b00a283c75c,13194db963293a22] 41052 --- [nio-8090-exec-1] c.a.p.distributedservice.Controller      : Incoming request at Service-2 at /path2

我截获了从“服务 1”发送到“服务 2”的​​请求,并发现传出的请求中已经存在以下标头。

x-b3-traceid:"222f3b00a283c75c", 
x-b3-spanid:"13194db963293a22", 
x-b3-parentspanid:"222f3b00a283c75c

在这里,我们看到下一个操作(对“服务 2”的​​调用)的跨度已经注入到标头中。这些是在客户端发出请求时由“服务 1”注入的。这意味着下一次调用“服务 2”的​​跨度已经从“服务 1”的客户端开始。在上面显示的标题中,“服务 1”的 span id 现在是下一个 span 的父 span id。

为了让事情更容易理解,我们可以使用名为Zipkin的拦截器工具直观地查看跟踪。

使用 Zipkin 可视化跟踪

要将 Zipkin 与应用程序集成,我们需要向应用程序添加 Zipkin 客户端依赖项。

<dependency>
   <groupId>org.springframework.cloud</groupId>
   <artifactId>spring-cloud-sleuth-zipkin</artifactId>
</dependency>

添加此依赖项后,Zipkin 客户端默认将跟踪发送到 Zipkin 服务器的 9411 端口。让我们使用其 docker 映像启动 Zipkin 服务器。我为此创建了一个简单的 docker-compose 文件。

version: "3.1"
services:
  zipkin:
    image: openzipkin/zipkin:2
    ports:
      - "9411:9411"

我们现在可以使用docker-compose up命令启动服务器。然后,您可以在以下位置访问 UIhttp://localhost:9411/

由于我们使用的是默认端口,我们不需要指定任何属性,但是如果您打算使用不同的端口,则需要添加以下属性。

spring:
  zipkin:
    baseUrl: http://localhost:9411

完成后,让我们使用上面相同的命令启动两个应用程序。在向路径中的“服务 1”发出请求时,/path2我们会得到以下跟踪。

这里显示了两个服务的跨度。我们可以通过查看跨度来更深入地挖掘。

“服务 1”的跨度是一个正常的跨度,涵盖了它接收到返回响应的请求。有趣的是第二个跨度。

在此,跨度中有四个点。

  • 第一点是指来自“服务1”的客户端何时开始请求。
  • 第二点是“服务 2”开始处理请求的时间。
  • 第三点是“Server 1”上的客户端完成接收响应的时间。
  • 最后,“服务器 2”完成的最后一点。

因此,我们了解了如何将分布式跟踪与 Spring Cloud Sleuth 集成,并使用 Zipkin 可视化跟踪。

到此这篇关于Spring Cloud Sleuth 和 Zipkin 进行分布式跟踪使用指南的文章就介绍到这了,更多相关Spring Cloud Sleuth Zipkin 分布式跟踪内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用Jenkins Pipeline自动化构建发布Java项目的方法

    使用Jenkins Pipeline自动化构建发布Java项目的方法

    这篇文章主要介绍了使用Jenkins Pipeline自动化构建发布Java项目的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-04-04
  • 实例讲述Java IO文件复制

    实例讲述Java IO文件复制

    本篇文章通过实例给大家详细讲述Java IO文件复制的相关知识点,需要的读者们学习下吧。
    2018-02-02
  • Java手写线程池之向JDK线程池进发

    Java手写线程池之向JDK线程池进发

    在前面的文章自己动手写乞丐版线程池中,我们写了一个非常简单的线程池实现,这个只是一个非常简单的实现,在本篇文章当中我们将要实现一个和JDK内部实现的线程池非常相似的线程池,需要的可以了解一下
    2022-10-10
  • iReport使用教程(示例教程)

    iReport使用教程(示例教程)

    在使用ireport的过程中,因为各种功能都要百度,但是大家使用的例子又千差万别让人很苦恼,所以用一个简单例子贯穿的展示一下ireport的常见功能
    2021-10-10
  • 在maven中引入本地jar包的步骤

    在maven中引入本地jar包的步骤

    这篇文章主要介绍了在maven中引入本地jar包的步骤,帮助大家更好的理解和学习使用Java,感兴趣的朋友可以了解下
    2021-04-04
  • Spring Boot多模块化后,服务间调用的坑及解决

    Spring Boot多模块化后,服务间调用的坑及解决

    这篇文章主要介绍了Spring Boot多模块化后,服务间调用的坑及解决,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • SpringBoot框架实现切换启动开发环境和测试环境

    SpringBoot框架实现切换启动开发环境和测试环境

    这篇文章主要介绍了SpringBoot框架实现切换启动开发环境和测试环境,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-12-12
  • 浅谈一下Java中的几种JVM级别的锁

    浅谈一下Java中的几种JVM级别的锁

    这篇文章主要介绍了浅谈一下Java中的几种JVM级别的锁,当存在安全漏洞时,也必须有相应的防护措施。顺应这种趋势,虚拟"锁"被发明出来,以解决线程的安全问题。在这篇文章中,我们将研究多年来出现的 Java 中几种典型的 JVM 级锁,需要的朋友可以参考下
    2023-08-08
  • 关于idea中SpringBoot启动失败的坑

    关于idea中SpringBoot启动失败的坑

    这篇文章主要介绍了关于idea中SpringBoot启动失败的坑,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • 详解Spring Boot 定时任务的实现方法

    详解Spring Boot 定时任务的实现方法

    最近在用SpringBoot写一个关于定时项目的时候遇到一个问题,下面小编把如何处理定时任务的解决思路分享给大家 ,需要的朋友参考下
    2017-05-05

最新评论