python工具dtreeviz决策树可视化和模型可解释性

 更新时间:2022年03月03日 11:03:18   作者:Python学习与数据挖掘  
这篇文章主要介绍了python工具dtreeviz决策树可视化和模型可解释性,决策树是梯度提升机和随机森林的基本构建块,在学习这些模型的工作原理和模型可解释性时,可视化决策树是一个非常有帮助,下文相关资料,需要的小伙伴可任意参考一下

前言:

决策树是梯度提升机和随机森林的基本构建块,在学习这些模型的工作原理和模型可解释性时,可视化决策树是一个非常有帮助。不过,当前的可视化包还很初级,对新手没有多少帮助。

最近逛 Github 时,发现一款非常棒的 dtreeviz 工具库:它用于决策树可视化和模型解释。使用 dtreeviz 可以可视化特征空间如何在决策节点上分割,训练样本如何分布在叶节点中,树如何对特定观察进行预测等等。这些操作对于理解分类或回归决策树的工作方式至关重要。

一、安装

pip install dtreeviz             # install dtreeviz for sklearn
pip install dtreeviz[xgboost]    # install XGBoost related dependency
pip install dtreeviz[pyspark]    # install pyspark related dependency
pip install dtreeviz[lightgbm]   # install LightGBM related dependency

二、用法

dtree:创建决策树可视化的主要功能。给定决策树回归器或分类器,使用 graphviz 创建并返回树可视化。

1.所需的库

导入所需要的基本库

from sklearn.datasets import *
from sklearn import tree
from dtreeviz.trees import *

2.回归决策树

树的默认方向是自上而下,但您可以使用orientation=“LR” 将其更改为从左到右。view() 给出一个带有渲染的 graphviz 对象的弹出窗口。

regr = tree.DecisionTreeRegressor(max_depth=2)
boston = load_boston()
regr.fit(boston.data, boston.target)

viz = dtreeviz(regr,
               boston.data,
               boston.target,
               target_name='price',
               feature_names=boston.feature_names)
              
viz.view()    

3.分类决策树

分类树需要class_names 的附加参数,给出类值与类名的映射。

classifier = tree.DecisionTreeClassifier(max_depth=2)  # limit depth of tree
iris = load_iris()
classifier.fit(iris.data, iris.target)

viz = dtreeviz(classifier, 
               iris.data, 
               iris.target,
               target_name='variety',
               feature_names=iris.feature_names, 
               class_names=["setosa", "versicolor", "virginica"]  # need class_names for classifier
              )  
              
viz.view() 

4.预测路径

突出显示参数 X 中传递的单个观察的特征值所在的决策节点。给出观察的特征值并突出树用于遍历路径的特征。

regr = tree.DecisionTreeRegressor(max_depth=2)  # limit depth of tree
diabetes = load_diabetes()
regr.fit(diabetes.data, diabetes.target)
X = diabetes.data[np.random.randint(0, len(diabetes.data)),:]  # random sample from training

viz = dtreeviz(regr,
               diabetes.data, 
               diabetes.target, 
               target_name='value', 
               orientation ='LR',  # left-right orientation
               feature_names=diabetes.feature_names,
               X=X)  # need to give single observation for prediction
              
viz.view()  

如果只想可视化预测路径,则需要设置参数show_just_path=True

dtreeviz(regr,
        diabetes.data, 
        diabetes.target, 
        target_name='value', 
        orientation ='TD',  # top-down orientation
        feature_names=diabetes.feature_names,
        X=X, # need to give single observation for prediction
        show_just_path=True     
        )

5.解释预测路径

这些可视化对于向没有机器学习技能的人解释为什么您的模型做出特定预测很有用。在explain_type=plain_english 的情况下,它在预测路径中搜索并找到特征值范围。

X = dataset[features].iloc[10]
print(X)
Pclass              3.0
Age                 4.0
Fare               16.7
Sex_label           0.0
Cabin_label       145.0
Embarked_label      2.0

print(explain_prediction_path(tree_classifier, X, feature_names=features, explanation_type="plain_english"))
2.5 <= Pclass 
Age < 36.5
Fare < 23.35
Sex_label < 0.5

explain_type=sklearn_default(仅适用于scikit-learn)的情况下,我们可以仅可视化预测路径中涉及的特征的重要性。 特征的重要性是基于杂质的平均减少来计算的。

explain_prediction_path(tree_classifier, X, feature_names=features, explanation_type="sklearn_default")

此外我们还可以自定义颜色,比如:

dtreeviz.trees.dtreeviz(regr,
                        boston.data,
                        boston.target,
                        target_name='price',
                        feature_names=boston.feature_names,
                        colors={'scatter_marker': '#00ff00'})

 到此这篇关于python工具dtreeviz决策树可视化和模型可解释性的文章就介绍到这了,更多相关python工具dtreeviz内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python线程join方法原理解析

    python线程join方法原理解析

    这篇文章主要介绍了python线程join方法原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • PHP魔术方法__ISSET、__UNSET使用实例

    PHP魔术方法__ISSET、__UNSET使用实例

    这篇文章主要介绍了PHP魔术方法__ISSET、__UNSET使用实例,本文直接给出代码示例,需要的朋友可以参考下
    2014-11-11
  • 详解python中字典的循环遍历的两种方式

    详解python中字典的循环遍历的两种方式

    本篇文章主要介绍了python中字典的循环遍历的两种方式 ,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-02-02
  • 解锁Python中神器vars内置函数的使用

    解锁Python中神器vars内置函数的使用

    vars()函数是一个内置函数,用于返回对象的__字典__,其中包含对象的__属性__,本文主要为大家详细介绍了vars()函数的具体使用,需要的小伙伴可以了解下
    2023-11-11
  • 20个解决日常编程问题的Python代码分享

    20个解决日常编程问题的Python代码分享

    在这篇文章中,主要和大家分享了20个Python代码片段,以帮助你应对日常编程挑战。文中的示例代码讲解详细,感兴趣的小伙伴可以跟上小编一起了解一下
    2023-01-01
  • Python random库使用方法及异常处理方案

    Python random库使用方法及异常处理方案

    这篇文章主要介绍了python random库使用方法及异常处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • Python技巧之四种多线程应用分享

    Python技巧之四种多线程应用分享

    这篇文章主要介绍了Python中多线程的所有方式,包括使用threading模块、使用concurrent.futures模块、使用multiprocessing模块以及使用asyncio模块,希望对大家有所帮助
    2023-05-05
  • 解决Jupyter NoteBook输出的图表太小看不清问题

    解决Jupyter NoteBook输出的图表太小看不清问题

    这篇文章主要介绍了解决Jupyter NoteBook输出的图表太小看不清问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python实时获取cmd的输出

    Python实时获取cmd的输出

    本文给大家分享python实时获取cmd的输出,对python实时获取输出相关知识感兴趣的朋友一起学习吧
    2015-12-12
  • python如何进行基准测试

    python如何进行基准测试

    这篇文章主要介绍了python如何进行基准测试,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-04-04

最新评论