PyTorch手写数字数据集进行多分类
一、实现过程
本文对经典手写数字数据集进行多分类,损失函数采用交叉熵,激活函数采用ReLU
,优化器采用带有动量的mini-batchSGD
算法。
所有代码如下:
0、导包
import torch from torchvision import transforms,datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim
1、准备数据
batch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,),(0.3081,)) ]) # 训练集 train_dataset = datasets.MNIST(root='G:/datasets/mnist',train=True,download=False,transform=transform) train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size) # 测试集 test_dataset = datasets.MNIST(root='G:/datasets/mnist',train=False,download=False,transform=transform) test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size)
2、设计模型
class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = torch.nn.Linear(784, 512) self.l2 = torch.nn.Linear(512, 256) self.l3 = torch.nn.Linear(256, 128) self.l4 = torch.nn.Linear(128, 64) self.l5 = torch.nn.Linear(64, 10) def forward(self, x): x = x.view(-1, 784) x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = F.relu(self.l3(x)) x = F.relu(self.l4(x)) return self.l5(x) model = Net() # 模型加载到GPU上 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device)
3、构造损失函数和优化器
criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
4、训练和测试
def train(epoch): running_loss = 0.0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data optimizer.zero_grad() # forward+backward+update outputs = model(inputs.to(device)) loss = criterion(outputs, target.to(device)) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299: print('[%d,%d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300)) running_loss = 0.0 def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images.to(device)) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted.cpu() == labels).sum().item() print('Accuracy on test set: %d %%' % (100 * correct / total)) for epoch in range(10): train(epoch) test()
运行结果如下:
[1,300] loss: 2.166
[1,600] loss: 0.797
[1,900] loss: 0.405
Accuracy on test set: 90 %
[2,300] loss: 0.303
[2,600] loss: 0.252
[2,900] loss: 0.218
Accuracy on test set: 94 %
[3,300] loss: 0.178
[3,600] loss: 0.168
[3,900] loss: 0.142
Accuracy on test set: 95 %
[4,300] loss: 0.129
[4,600] loss: 0.119
[4,900] loss: 0.110
Accuracy on test set: 96 %
[5,300] loss: 0.094
[5,600] loss: 0.092
[5,900] loss: 0.091
Accuracy on test set: 96 %
[6,300] loss: 0.077
[6,600] loss: 0.070
[6,900] loss: 0.075
Accuracy on test set: 97 %
[7,300] loss: 0.061
[7,600] loss: 0.058
[7,900] loss: 0.058
Accuracy on test set: 97 %
[8,300] loss: 0.043
[8,600] loss: 0.051
[8,900] loss: 0.050
Accuracy on test set: 97 %
[9,300] loss: 0.041
[9,600] loss: 0.038
[9,900] loss: 0.043
Accuracy on test set: 97 %
[10,300] loss: 0.030
[10,600] loss: 0.032
[10,900] loss: 0.033
Accuracy on test set: 97 %
二、参考文献
到此这篇关于PyTorch手写数字数据集进行多分类的文章就介绍到这了,更多相关python多分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
基于python利用Pyecharts使高清图片导出并在PPT中动态展示
这篇文章主要介绍了基于python利用Pyecharts使高清图片导出并在PPT中动态展示,pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库,下面来看看具体的实现过程吧,需要的小伙伴也可以参考一下2022-01-01基于Python的网页自动化工具DrissionPage的使用详解
DrissionPage 是一个基于 python 的网页自动化工具,它既能控制浏览器,也能收发数据包,还能把两者合而为一,下面就跟随小编一起来学习一下它的具体使用吧2024-01-01Python 爬虫之Beautiful Soup模块使用指南
这篇文章主要介绍了Python 爬虫之Beautiful Soup模块使用指南,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧2018-07-07
最新评论