pytorch中的hook机制register_forward_hook

 更新时间:2022年03月09日 11:21:01   作者:机器学习入坑者  
这篇文章主要介绍了pytorch中的hook机制register_forward_hook,手动在forward之前注册hook,hook在forward执行以后被自动执行,下面详细的内容介绍,需要的小伙伴可以参考一下

1、hook背景

Hook被成为钩子机制,这不是pytorch的首创,在Windows的编程中已经被普遍采用,包括进程内钩子和全局钩子。按照自己的理解,hook的作用是通过系统来维护一个链表,使得用户拦截(获取)通信消息,用于处理事件。

pytorch中包含forwardbackward两个钩子注册函数,用于获取forward和backward中输入和输出,按照自己不全面的理解,应该目的是“不改变网络的定义代码,也不需要在forward函数中return某个感兴趣层的输出,这样代码太冗杂了”。

2、源码阅读

register_forward_hook()函数必须在forward()函数调用之前被使用,因为这个函数源码注释显示这个函数“ it will not have effect on forward since this is called after :func:`forward` is called”,也就是这个函数在forward()之后就没有作用了!!!):

作用:获取forward过程中每层的输入和输出,用于对比hook是不是正确记录。

def register_forward_hook(self, hook):
        r"""Registers a forward hook on the module.
        The hook will be called every time after :func:`forward` has computed an output.
        It should have the following signature::
            hook(module, input, output) -> None or modified output
        The hook can modify the output. It can modify the input inplace but
        it will not have effect on forward since this is called after
        :func:`forward` is called.

        Returns:
            :class:`torch.utils.hooks.RemovableHandle`:
                a handle that can be used to remove the added hook by calling
                ``handle.remove()``
        """
        handle = hooks.RemovableHandle(self._forward_hooks)
        self._forward_hooks[handle.id] = hook
        return handle

3、定义一个用于测试hooker的类

如果随机的初始化每个层,那么就无法测试出自己获取的输入输出是不是forward中的输入输出了,所以需要将每一层的权重和偏置设置为可识别的值(比如全部初始化为1)。网络包含两层(Linear有需要求导的参数被称为一个层,而ReLU没有需要求导的参数不被称作一层),__init__()中调用initialize函数对所有层进行初始化。

注意:在forward()函数返回各个层的输出,但是ReLU6没有返回,因为后续测试的时候不对这一层进行注册hook。

class TestForHook(nn.Module):
    def __init__(self):
        super().__init__()

        self.linear_1 = nn.Linear(in_features=2, out_features=2)
        self.linear_2 = nn.Linear(in_features=2, out_features=1)
        self.relu = nn.ReLU()
        self.relu6 = nn.ReLU6()
        self.initialize()

    def forward(self, x):
        linear_1 = self.linear_1(x)
        linear_2 = self.linear_2(linear_1)
        relu = self.relu(linear_2)
        relu_6 = self.relu6(relu)
        layers_in = (x, linear_1, linear_2)
        layers_out = (linear_1, linear_2, relu)
        return relu_6, layers_in, layers_out
    def initialize(self):
        """ 定义特殊的初始化,用于验证是不是获取了权重"""
        self.linear_1.weight = torch.nn.Parameter(torch.FloatTensor([[1, 1], [1, 1]]))
        self.linear_1.bias = torch.nn.Parameter(torch.FloatTensor([1, 1]))
        self.linear_2.weight = torch.nn.Parameter(torch.FloatTensor([[1, 1]]))
        self.linear_2.bias = torch.nn.Parameter(torch.FloatTensor([1]))
        return True

4、定义hook函数

hook()函数是register_forward_hook()函数必须提供的参数,好处是“用户可以自行决定拦截了中间信息之后要做什么!”,比如自己想单纯的记录网络的输入输出(也可以进行修改等更加复杂的操作)。

首先定义几个容器用于记录:

定义用于获取网络各层输入输出tensor的容器:

# 并定义module_name用于记录相应的module名字
module_name = []
features_in_hook = []
features_out_hook = []
hook函数需要三个参数,这三个参数是系统传给hook函数的,自己不能修改这三个参数:

hook函数负责将获取的输入输出添加到feature列表中;并提供相应的module名字

def hook(module, fea_in, fea_out):
    print("hooker working")
    module_name.append(module.__class__)
    features_in_hook.append(fea_in)
    features_out_hook.append(fea_out)
    return None

5、对需要的层注册hook

注册钩子必须在forward()函数被执行之前,也就是定义网络进行计算之前就要注册,下面的代码对网络除去ReLU6以外的层都进行了注册(也可以选定某些层进行注册):

注册钩子可以对某些层单独进行:

net = TestForHook()
net_chilren = net.children()
for child in net_chilren:
    if not isinstance(child, nn.ReLU6):
        child.register_forward_hook(hook=hook)

6、测试forward()返回的特征和hook记录的是否一致

6.1 测试forward()提供的输入输出特征

由于前面的forward()函数返回了需要记录的特征,这里可以直接测试:

out, features_in_forward, features_out_forward = net(x)
print("*"*5+"forward return features"+"*"*5)
print(features_in_forward)
print(features_out_forward)
print("*"*5+"forward return features"+"*"*5)

得到下面的输出是理所当然的:

*****forward return features*****
(tensor([[0.1000, 0.1000],
        [0.1000, 0.1000]]), tensor([[1.2000, 1.2000],
        [1.2000, 1.2000]], grad_fn=<AddmmBackward>), tensor([[3.4000],
        [3.4000]], grad_fn=<AddmmBackward>))
(tensor([[1.2000, 1.2000],
        [1.2000, 1.2000]], grad_fn=<AddmmBackward>), tensor([[3.4000],
        [3.4000]], grad_fn=<AddmmBackward>), tensor([[3.4000],
        [3.4000]], grad_fn=<ThresholdBackward0>))
*****forward return features*****

6.2 hook记录的输入特征和输出特征

hook通过list结构进行记录,所以可以直接print

测试features_in是不是存储了输入:

print("*"*5+"hook record features"+"*"*5)
print(features_in_hook)
print(features_out_hook)
print(module_name)
print("*"*5+"hook record features"+"*"*5)

得到和forward一样的结果:

*****hook record features*****
[(tensor([[0.1000, 0.1000],
        [0.1000, 0.1000]]),), (tensor([[1.2000, 1.2000],
        [1.2000, 1.2000]], grad_fn=<AddmmBackward>),), (tensor([[3.4000],
        [3.4000]], grad_fn=<AddmmBackward>),)]
[tensor([[1.2000, 1.2000],
        [1.2000, 1.2000]], grad_fn=<AddmmBackward>), tensor([[3.4000],
        [3.4000]], grad_fn=<AddmmBackward>), tensor([[3.4000],
        [3.4000]], grad_fn=<ThresholdBackward0>)]
[<class 'torch.nn.modules.linear.Linear'>, 
<class 'torch.nn.modules.linear.Linear'>,
 <class 'torch.nn.modules.activation.ReLU'>]
*****hook record features*****

6.3 把hook记录的和forward做减法

如果害怕会有小数点后面的数值不一致,或者数据类型的不匹配,可以对hook记录的特征和forward记录的特征做减法:

测试forward返回的feautes_in是不是和hook记录的一致:

print("sub result'")
for forward_return, hook_record in zip(features_in_forward, features_in_hook):
    print(forward_return-hook_record[0])

得到的全部都是0,说明hook没问题:

sub result
tensor([[0., 0.],
        [0., 0.]])
tensor([[0., 0.],
        [0., 0.]], grad_fn=<SubBackward0>)
tensor([[0.],
        [0.]], grad_fn=<SubBackward0>)

7、完整代码

import torch
import torch.nn as nn


class TestForHook(nn.Module):
    def __init__(self):
        super().__init__()

        self.linear_1 = nn.Linear(in_features=2, out_features=2)
        self.linear_2 = nn.Linear(in_features=2, out_features=1)
        self.relu = nn.ReLU()
        self.relu6 = nn.ReLU6()
        self.initialize()

    def forward(self, x):
        linear_1 = self.linear_1(x)
        linear_2 = self.linear_2(linear_1)
        relu = self.relu(linear_2)
        relu_6 = self.relu6(relu)
        layers_in = (x, linear_1, linear_2)
        layers_out = (linear_1, linear_2, relu)
        return relu_6, layers_in, layers_out

    def initialize(self):
        """ 定义特殊的初始化,用于验证是不是获取了权重"""
        self.linear_1.weight = torch.nn.Parameter(torch.FloatTensor([[1, 1], [1, 1]]))
        self.linear_1.bias = torch.nn.Parameter(torch.FloatTensor([1, 1]))
        self.linear_2.weight = torch.nn.Parameter(torch.FloatTensor([[1, 1]]))
        self.linear_2.bias = torch.nn.Parameter(torch.FloatTensor([1]))
        return True

定义用于获取网络各层输入输出tensor的容器,并定义module_name用于记录相应的module名字

module_name = []
features_in_hook = []
features_out_hook = []

hook函数负责将获取的输入输出添加到feature列表中,并提供相应的module名字

def hook(module, fea_in, fea_out):
    print("hooker working")
    module_name.append(module.__class__)
    features_in_hook.append(fea_in)
    features_out_hook.append(fea_out)
    return None

定义全部是1的输入:

x = torch.FloatTensor([[0.1, 0.1], [0.1, 0.1]])

注册钩子可以对某些层单独进行:

net = TestForHook()
net_chilren = net.children()
for child in net_chilren:
    if not isinstance(child, nn.ReLU6):
        child.register_forward_hook(hook=hook)

测试网络输出:

out, features_in_forward, features_out_forward = net(x)
print("*"*5+"forward return features"+"*"*5)
print(features_in_forward)
print(features_out_forward)
print("*"*5+"forward return features"+"*"*5)

测试features_in是不是存储了输入:

print("*"*5+"hook record features"+"*"*5)
print(features_in_hook)
print(features_out_hook)
print(module_name)
print("*"*5+"hook record features"+"*"*5)

测试forward返回的feautes_in是不是和hook记录的一致:

print("sub result")
for forward_return, hook_record in zip(features_in_forward, features_in_hook):
    print(forward_return-hook_record[0])

 到此这篇关于pytorch中的hook机制register_forward_hook的文章就介绍到这了,更多相关pytorch中的hook机制内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在Python中使用正则表达式的方法

    在Python中使用正则表达式的方法

    这篇文章主要介绍了在Python中使用正则表达式的方法,讲到了专门对正则表达式提供支持的扩展库re,需要的朋友可以参考下
    2015-08-08
  • Python将字典转换为XML的方法

    Python将字典转换为XML的方法

    这篇文章主要介绍了Python将字典转换为XML的方法,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-08-08
  • Jmeter中JSR223设置变量方式

    Jmeter中JSR223设置变量方式

    本文主要介绍了JMeter的几种常用变量设置方式,特别对JSR223设置变量进行了详细解释,JSR223是Java规范请求,可以向Java平台增添新的API和服务,JSR223Sampler可以使用JSR223脚本代码执行创建/更新变量所需的示例或一些计算
    2024-10-10
  • Centos安装python3与scapy模块的问题及解决方法

    Centos安装python3与scapy模块的问题及解决方法

    这篇文章主要介绍了Centos安装python3与scapy模块的问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • python中的type,元类,类,对象用法

    python中的type,元类,类,对象用法

    这篇文章主要介绍了python中的type,元类,类,对象用法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • python通过pil模块将raw图片转换成png图片的方法

    python通过pil模块将raw图片转换成png图片的方法

    这篇文章主要介绍了python通过pil模块将raw图片转换成png图片的方法,实例分析了Python中pil模块的使用技巧,并Image.fromstring函数进行了较为详尽的分析说明,需要的朋友可以参考下
    2015-03-03
  • Django基础三之视图函数的使用方法

    Django基础三之视图函数的使用方法

    这篇文章主要介绍了Django基础三之视图函数的使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Python的Flask框架及Nginx实现静态文件访问限制功能

    Python的Flask框架及Nginx实现静态文件访问限制功能

    这篇文章主要介绍了Python的Flask框架及Nginx实现静态文件访问限制功能,Nginx方面利用到了自带的XSendfile,需要的朋友可以参考下
    2016-06-06
  • 手把手教你如何安装Pycharm(详细图文教程)

    手把手教你如何安装Pycharm(详细图文教程)

    这篇文章主要介绍了手把手教你如何安装Pycharm(详细图文教程),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-11-11
  • 使用PIL(Python-Imaging)反转图像的颜色方法

    使用PIL(Python-Imaging)反转图像的颜色方法

    今天小编就为大家分享一篇使用PIL(Python-Imaging)反转图像的颜色方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01

最新评论