Python图像运算之图像灰度非线性变换详解

 更新时间:2022年03月09日 16:36:17   作者:Eastmount  
这篇文章将详细讲解图像灰度非线性变换。图像灰度非线性变换主要包括对数变换、幂次变换、指数变换、分段函数变换,通过非线性关系对图像进行灰度处理,本文主要讲解三种常见类型的灰度非线性变换,感兴趣的可以了解一下

一.图像灰度非线性变换

原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
    for j in range(width):
        gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

图像灰度非线性变换的输出结果如图13-1所示:

二.图像灰度对数变换

图像灰度的对数变换一般表示如公式(13-1)所示:

其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如图13-2所示,它表示对数曲线下的灰度值变化情况,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。

对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。

在图13-3中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。

下面的代码实现了图像灰度的对数变换。

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2

#绘制曲线
def log_plot(c):
    x = np.arange(0, 256, 0.01)
    y = c * np.log(1 + x)
    plt.plot(x, y, 'r', linewidth=1)
    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
    plt.title('对数变换函数')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.xlim(0, 255), plt.ylim(0, 255)
    plt.show()

#对数变换
def log(c, img):
    output = c * np.log(1.0 + img)
    output = np.uint8(output + 0.5)
    return output

#读取原始图像
img = cv2.imread('dark.png')

#绘制对数变换曲线
log_plot(42)

#图像灰度对数变换
output = log(42, img)

#显示图像
cv2.imshow('Input', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

图13-4表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。

对应的对数函数曲线如图13-5所示,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

三.图像灰度伽玛变换

伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式(13-2)所示:

当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。

当γ<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。

当γ=1时,该灰度变换是线性的,此时通过线性方式改变原图像。

Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2

#绘制曲线
def gamma_plot(c, v):
    x = np.arange(0, 256, 0.01)
    y = c*x**v
    plt.plot(x, y, 'r', linewidth=1)
    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
    plt.title('伽马变换函数')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.xlim([0, 255]), plt.ylim([0, 255])
    plt.show()

#伽玛变换
def gamma(img, c, v):
    lut = np.zeros(256, dtype=np.float32)
    for i in range(256):
        lut[i] = c * i ** v
    output_img = cv2.LUT(img, lut) #像素灰度值的映射
    output_img = np.uint8(output_img+0.5)  
    return output_img

#读取原始图像
img = cv2.imread('white.png')

#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)

#图像灰度伽玛变换
output = gamma(img, 0.00000005, 4.0)

#显示图像
cv2.imshow('Imput', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

图13-6表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。

对应的伽马变换曲线如图13-7所示,其中x表示原始图像的灰度值,y表示伽马变换之后的目标灰度值。

四.总结

本文主要讲解图像灰度非线性变换,包括图像对数变换和伽马变换。其中,图像经过对数变换后,较暗区域的对比度将有所提升;而案例中经过伽玛变换处理的图像,整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。这些图像处理方法能有效提升图像的质量,为我们提供更好地感官效果。

到此这篇关于Python图像运算之图像灰度非线性变换详解的文章就介绍到这了,更多相关Python图像灰度变换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python利用flask操作Redis的方法详解

    Python利用flask操作Redis的方法详解

    这篇文章主要为大家详细介绍了Python如何利用flask操作Redis,文中的示例代码讲解详细,对我们学习Python有一定的帮助,需要的可以参考一下
    2023-02-02
  • python爬虫爬取图片的简单代码

    python爬虫爬取图片的简单代码

    在本篇文章里小编给大家整理的是一篇关于python爬虫爬取图片的简单代码内容,有兴趣的朋友们可以测试下。
    2021-01-01
  • Python树莓派学习笔记之UDP传输视频帧操作详解

    Python树莓派学习笔记之UDP传输视频帧操作详解

    这篇文章主要介绍了Python树莓派学习笔记之UDP传输视频帧操作,结合实例形式详细分析了Python树莓派编程中使用UDP协议进行视频帧传输的相关操作技巧与注意事项,需要的朋友可以参考下
    2019-11-11
  • Pytorch使用visdom可视化问题

    Pytorch使用visdom可视化问题

    这篇文章主要介绍了Pytorch使用visdom可视化问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • Python Asyncio调度原理详情

    Python Asyncio调度原理详情

    这篇文章主要介绍了Python Asyncio调度原理详情,Python.Asyncio是一个大而全的库,它包括很多功能,而跟核心调度相关的逻辑除了三种可等待对象外,还有其它一些功能,它们分别位于runners.py,base_event.py,event.py三个文件中
    2022-06-06
  • Django filter动态过滤与排序实现过程解析

    Django filter动态过滤与排序实现过程解析

    这篇文章主要介绍了Django filter动态过滤与排序实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • Python常用模块os.path之文件及路径操作方法

    Python常用模块os.path之文件及路径操作方法

    os.path 模块主要用于获取文件的属性。这篇文章主要介绍了Python常用模块os.path——文件及路径操作,需要的朋友可以参考下
    2019-12-12
  • Python tkinter和exe打包的方法

    Python tkinter和exe打包的方法

    这篇文章主要介绍了Python tkinter和exe打包的方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-02-02
  • 微软开源最强Python自动化神器Playwright(不用写一行代码)

    微软开源最强Python自动化神器Playwright(不用写一行代码)

    这篇文章主要介绍了微软开源最强Python自动化神器Playwright(不用写一行代码),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • python读取文本中数据并转化为DataFrame的实例

    python读取文本中数据并转化为DataFrame的实例

    下面小编就为大家分享一篇python读取文本中数据并转化为DataFrame的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04

最新评论