C++工厂方法之对象创建型模式详解

 更新时间:2022年03月11日 09:47:56   作者:早睡身体好hh  
这篇文章主要为大家详细介绍了C++对象创建型模式,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助

1.代码示例

工厂方法模式,简称工厂模式或者多态工厂模式。与简单工厂模式相比,引入了更多的新类,灵活性更强,实现也更加复杂。符合开闭原则,付出的代价是需要新增加多个新的工厂类。

如下,M_UndeadFactoryM_ElementFactoryM_MechanicFactory 类有一个共同的父类 M_ParFactory(工厂抽象类)。

M_ParFactory 类中的 createMonster 成员函数其实就是个工厂方法,工厂方法模式的名字也是由此而来。

#include <iostream>
using namespace std;
// 怪物父类
class Monster
{
public:
	// 构造函数
	Monster(int life, int magic, int attack) : m_life(life), m_magic(magic), m_attack(attack) {}
	virtual ~Monster() {} // 父类的析构函数应该为虚函数
protected: // 可能被子类访问的成员,所以用protected修饰
	int m_life; // 生命值
	int m_magic; // 魔法值
	int m_attack; // 攻击力
};
// 亡灵类怪物
class M_Undead : public Monster
{
public:
	// 构造函数
	M_Undead(int life, int magic, int attack) : Monster(life, magic, attack)
	{
		cout << "一个亡灵类怪物来到了这个世界" << endl;
	}
	// 其他代码略
};
// 元素类怪物
class M_Element : public Monster
{
public:
	// 构造函数
	M_Element(int life, int magic, int attack) : Monster(life, magic, attack)
	{
		cout << "一个元素类怪物来到了这个世界" << endl;
	}
	// 其他代码略
};
// 机械类怪物
class M_Mechanic : public Monster
{
public:
	// 构造函数
	M_Mechanic(int life, int magic, int attack) : Monster(life, magic, attack)
	{
		cout << "一个机械类怪物来到了这个世界" << endl;
	}
	// 其他代码略
};
// 所有工厂类的父类
class M_ParFactory
{
public:
	virtual Monster* createMonster() = 0; // 具体实现在子类中进行
	virtual ~M_ParFactory() {} // 父类的析构函数应该为虚函数
};
// M_Undead怪物类型的工厂,生产M_Undead类型怪物
class M_UndeadFactory : public M_ParFactory
{
public:
	virtual Monster* createMonster()
	{
		Monster *ptmp = new M_Undead(300, 50, 80); // 创建亡灵类怪物
		//这里可以增加一些其他业务代码
		return ptmp;
	}
};
// M_Element怪物类型的工厂,生产M_Element类型怪物
class M_ElementFactory : public M_ParFactory
{
public:
	virtual Monster* createMonster()
	{
		return new M_Element(200, 80, 100); // 创建元素类怪物
	}
};
// M_Mechanic怪物类型的工厂,生产M_Mechanic类型怪物
class M_MechanicFactory : public M_ParFactory
{
public:
	virtual Monster* createMonster()
	{
		return new M_Mechanic(400, 0, 110); // 创建机械类怪物
	}
};
// 全局函数:用于创建怪物对象
// 注意:形参的类型是工厂父类类型的指针,返回类型是怪物父类类型的指针
Monster* Gbl_CreateMonster(M_ParFactory* factory)
{
	return factory->createMonster();
	// createMonster虚函数扮演了多态new的行为,factory指向的具体怪物工厂类不同,创建的怪物对象也不同
}
int main()
{
	M_ParFactory* p_ud_fy = new M_UndeadFactory(); // 多态工厂,注意指针类型
	Monster* pM1 = Gbl_CreateMonster(p_ud_fy); // 产生了一只亡灵类怪物,也是多态,注意返回类型
	// 当然,这里也可以直接写成 Monster *pM1 = p_ud_fy->createMonster();
	M_ParFactory* p_elm_fy = new M_ElementFactory();
	Monster *pM2 = Gbl_CreateMonster(p_elm_fy); // 产生了一只元素类怪物
	M_ParFactory* p_mec_fy = new M_MechanicFactory();
	Monster* pM3 = Gbl_CreateMonster(p_mec_fy); // 产生了一只机械类怪物
	// 释放工厂
	delete p_ud_fy;
	delete p_elm_fy;
	delete p_mec_fy;
	// 释放怪物
	delete pM1;
	delete pM2;
	delete pM3;
	return 0;
}

简单工厂模式把创建对象这件事放到了一个统一的地方来处理,弹性比较差。而工厂方法模式相当于建立了一个程序实现框架,从而让子类来决定对象如何创建。

工厂方法模式往往需要创建一个与产品等级结构(层次)相同的工厂等级结构,这也增加了新类的层次结构和数目。

如果不想创建太多工厂类,又想封装变化,则可以创建怪物工厂子类模板。

#include <iostream>
using namespace std;
// 怪物父类
class Monster
{
public:
	// 构造函数
	Monster(int life, int magic, int attack) : m_life(life), m_magic(magic), m_attack(attack) {}
	virtual ~Monster() {} // 父类的析构函数应该为虚函数
protected: // 可能被子类访问的成员,所以用protected修饰
	int m_life; // 生命值
	int m_magic; // 魔法值
	int m_attack; // 攻击力
};
// 亡灵类怪物
class M_Undead : public Monster
{
public:
	// 构造函数
	M_Undead(int life, int magic, int attack) : Monster(life, magic, attack)
	{
		cout << "一个亡灵类怪物来到了这个世界" << endl;
	}
	// 其他代码略
};
// 元素类怪物
class M_Element : public Monster
{
public:
	// 构造函数
	M_Element(int life, int magic, int attack) : Monster(life, magic, attack)
	{
		cout << "一个元素类怪物来到了这个世界" << endl;
	}
	// 其他代码略
};
// 机械类怪物
class M_Mechanic : public Monster
{
public:
	// 构造函数
	M_Mechanic(int life, int magic, int attack) : Monster(life, magic, attack)
	{
		cout << "一个机械类怪物来到了这个世界" << endl;
	}
	// 其他代码略
};
// 所有工厂类的父类
class M_ParFactory
{
public:
	virtual Monster* createMonster() = 0; // 具体实现在子类中进行
	virtual ~M_ParFactory() {} // 父类的析构函数应该为虚函数
};
template <typename T>
class M_ChildFactory :public M_ParFactory
{
public:
	virtual Monster* createMonster()
	{
		return new T(300, 50, 80); //如果需要不同的值则可以通过createMonster的形参将值传递进来
	}
};
int main()
{
	M_ChildFactory<M_Undead> myFactory;
	Monster* pM10 = myFactory.createMonster();
	// 释放资源
	delete pM10;
	getchar();
	return 0;
}

UML 如下:

在这里插入图片描述

2.工厂方法模式的定义(实现意图)

定义一个用于创建对象的接口(M_ParFactory类中的createMonster成员函数),由子类(M_UndeadFactoryM_ElementFactoryM_MechanicFactory)决定要实例化的类是哪一个。该模式使得某个类(M_UndeadM_ElementM_Mechanic)的实例化延迟到子类(M_UndeadFactoryM_ElementFactoryM_MechanicFactory)。

一般可以认为,将简单工厂模式的代码经过把工厂类进行抽象改造成符合开闭原则后的代码,就变成了工厂方法模式的代码。

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注脚本之家的更多内容!  

相关文章

  • c语言 字符串转大写的简单实例

    c语言 字符串转大写的简单实例

    这篇文章主要介绍了c语言 字符串转大写的简单实例,有需要的朋友可以参考一下
    2013-12-12
  • 解决C++ openCV无法读取视频但是可以读取图像的问题记录

    解决C++ openCV无法读取视频但是可以读取图像的问题记录

    在使用OpenCV的cv::VideoCapture读取视频文件时,可能会遇到无法读取特定格式,如MP4的视频文件的问题,本文介绍解决C++ openCV无法读取视频但是可以读取图像的问题记录,感兴趣的朋友跟随小编一起看看吧
    2024-09-09
  • 使用C/C++语言生成一个随机迷宫游戏

    使用C/C++语言生成一个随机迷宫游戏

    迷宫相信大家都走过,主要是考验你的逻辑思维。今天小编使用C语言生成一个随机迷宫游戏,具体实现代码,大家通过本文学习吧
    2016-12-12
  • C++资源管理操作方法详解

    C++资源管理操作方法详解

    系统中的资源,诸如动态申请的内存,文件描述符,数据库连接,网络socket等,在不用的时候,应该及时归还给系统,否则就会造成内存泄露
    2022-09-09
  • C++实现高性能转换大小写算法示例

    C++实现高性能转换大小写算法示例

    大小写转换是我们作为一名程序员经常会遇到,也必须要会的一个功能,下面这篇文章主要给大家介绍了关于C++实现高性能转换大小写算法的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
    2018-01-01
  • VC枚举串口端口应用

    VC枚举串口端口应用

    这篇文章主要介绍了VC枚举串口端口应用,罗列了常见的一些串口端口的应用实例,需要的朋友可以参考下
    2014-10-10
  • C++中extern

    C++中extern "C"的用法

    这篇文章主要介绍了C++中extern "C"的用法,是深入理解C++所应该掌握的概念,需要的朋友可以参考下
    2014-08-08
  • C语言运算符深入探究优先级与结合性及种类

    C语言运算符深入探究优先级与结合性及种类

    C语言运算符号指的是运算符号。C语言中的符号分为10类:算术运算符、关系运算符、逻辑运算符、位操作运算符、赋值运算符、条件运算符、逗号运算符、指针运算符、求字节数运算符和特殊运算符
    2022-05-05
  • c++ builder TreeView控件节点遍历代码

    c++ builder TreeView控件节点遍历代码

    这篇文章介绍了c++ builder TreeView控件节点遍历代码,有需要的朋友可以参考一下
    2013-09-09
  • C++函数对象详解附带实例

    C++函数对象详解附带实例

    这篇文章主要介绍了C++函数对象详解附带实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03

最新评论