基于Pytorch的神经网络之Regression的实现

 更新时间:2022年03月15日 10:15:49   作者:ZDDWLIG  
本文主要介绍了基于Pytorch的神经网络之Regression的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

1.引言

我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与分类,现在让我们来搭建第一个用于拟合回归的神经网络吧。

2.神经网络搭建

2.1 准备工作

要搭建拟合神经网络并绘图我们需要使用python的几个库。

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
 
x = torch.unsqueeze(torch.linspace(-5, 5, 100), dim=1)
y = x.pow(3) + 0.2 * torch.rand(x.size())

 既然是拟合,我们当然需要一些数据啦,我选取了在区间 [-5,5] 内的100个等间距点,并将它们排列成三次函数的图像。

2.2 搭建网络

我们定义一个类,继承了封装在torch中的一个模块,我们先分别确定输入层、隐藏层、输出层的神经元数目,继承父类后再使用torch中的.nn.Linear()函数进行输入层到隐藏层的线性变换,隐藏层也进行线性变换后传入输出层predict,接下来定义前向传播的函数forward(),使用relu()作为激活函数,最后输出predict()结果即可。

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        x = F.relu(self.hidden(x))
        return self.predict(x)
net = Net(1, 20, 1)
print(net)
optimizer = torch.optim.Adam(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()

网络的框架搭建完了,然后我们传入三层对应的神经元数目再定义优化器,这里我选取了Adam而随机梯度下降(SGD),因为它是SGD的优化版本,效果在大部分情况下比SGD好,我们要传入这个神经网络的参数(parameters),并定义学习率(learning rate),学习率通常选取小于1的数,需要凭借经验并不断调试。最后我们选取均方差法(MSE)来计算损失(loss)。

2.3 训练网络

接下来我们要对我们搭建好的神经网络进行训练,我训练了2000轮(epoch),先更新结果prediction再计算损失,接着清零梯度,然后根据loss反向传播(backward),最后进行优化,找出最优的拟合曲线。

for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

3.效果

使用如下绘图的代码展示效果。

for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy(), s=10)
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=2)
        plt.text(2, -100, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 10, 'color': 'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()

最后的结果: 

4. 完整代码

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
 
x = torch.unsqueeze(torch.linspace(-5, 5, 100), dim=1)
y = x.pow(3) + 0.2 * torch.rand(x.size())
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        x = F.relu(self.hidden(x))
        return self.predict(x)
net = Net(1, 20, 1)
print(net)
optimizer = torch.optim.Adam(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
plt.ion()
for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy(), s=10)
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=2)
        plt.text(2, -100, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 10, 'color': 'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()

到此这篇关于基于Pytorch的神经网络之Regression的实现的文章就介绍到这了,更多相关 Pytorch Regression内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python图像识别+KNN求解数独的实现

    Python图像识别+KNN求解数独的实现

    这篇文章主要介绍了Python图像识别+KNN求解数独的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • Python跨文件全局变量的实现方法示例

    Python跨文件全局变量的实现方法示例

    我们在使用Python编写应用的时候,有时候会遇到多个文件之间传递同一个全局变量的情况。所以下面这篇文章主要给大家介绍了关于Python跨文件全局变量的实现方法,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-12-12
  • PYQT5 实现界面的嵌套方式

    PYQT5 实现界面的嵌套方式

    这篇文章主要介绍了PYQT5 实现界面的嵌套方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 基于Python编写简单实用的日志装饰器

    基于Python编写简单实用的日志装饰器

    在写代码的时候,往往会漏掉日志这个关键因素,导致功能在使用的时候出错却无法溯源。这个时候只要利用日志装饰器就能解决,本文将用Python自制一个简单实用的日志装饰器,需要的可以参考一下
    2022-05-05
  • python去除列表中的空值元素实战技巧

    python去除列表中的空值元素实战技巧

    这篇文章主要介绍了python实战技巧之去除列表中的空值元素,搜集针对python高效处理数据的核心代码,今天是实现去除列表中的空值元素,需要的朋友可以参考下
    2023-02-02
  • 解决pycharm安装后代码区不能编辑的问题

    解决pycharm安装后代码区不能编辑的问题

    今天小编就为大家分享一篇解决pycharm安装后代码区不能编辑的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python学习之魔法函数(filter,map,reduce)详解

    Python学习之魔法函数(filter,map,reduce)详解

    这篇文章我们将来学习一下,Python中的三个高级函数:filter()、map()、reduce(),这三个函数也被称为魔法函数,感兴趣的小伙伴可以了解一下
    2022-04-04
  • Django框架配置mysql数据库实现过程

    Django框架配置mysql数据库实现过程

    这篇文章主要介绍了Django框架配置mysql数据库实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-04-04
  • 在Python中使用poplib模块收取邮件的教程

    在Python中使用poplib模块收取邮件的教程

    这篇文章主要介绍了在Python中使用poplib模块收取邮件的教程,代码基于Python2.x版本,需要的朋友可以参考下
    2015-04-04
  • python模块与C和C++动态库相互调用实现过程示例

    python模块与C和C++动态库相互调用实现过程示例

    这篇文章主要为大家介绍了python模块与C和C++动态库之间相互调用的实现过程示例,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2021-11-11

最新评论