Python实例详解递归算法

 更新时间:2022年03月18日 11:49:13   作者:Python大数据分析  
递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。本文将详细为大家介绍Python中的递归算法,需要的可以参考一下

递归是一种较为抽象的数学逻辑,可以简单的理解为「程序调用自身的算法」。

维基百科对递归的解释是:

递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。

例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的。也可以理解为自我复制的过程。

"递"是传递的意思,"归"是归还的意思,先把一个方法一层层传递下去,然后传递到最后一层再把结果归还回来。

比方说我排队做核酸检测,前面有100个人,我想问下医务人员几点下班,于是问了我前面那兄弟,他又问了他前面的人,一个个传递下去,最终传递到了医务人员那里,回话说下午六点下班。这句话又往回传,最终到了我这里,我知道了医务人员六点下班。

这个过程就是一个递归过程,如果说"传话"本身是一种方法,那这整个传话过程就是在调用自身方法,最终获得了结果。

这和循环不一样,循环相当于给所有人都所有人都戴了耳机,然后有"中介"挨个去问你知道医务人员几点下班吗,等问到医务人员的时候,得到答案,“中介”告诉我六点下班。

实质上,递归就是把一个大问题不断拆解,像剥洋葱一样,最终拆解到最小层面,会返回解题结果。

用Python举一个最简单的递归函数例子,讲一讲什么是递归的应用。

我们经常会看到函数会调用自身来实现循环操作,比如求阶乘的函数。

整数n的阶乘即n*(n-1)*(n-2)*...*3*2*1

如下面5行Python代码,就能实现阶乘的计算

def fact(n):
    ''' n表示要求的数的阶乘 '''
    if n==1:
        return n 
    n = n*fact(n-1)
    return n  

print(factorial(5))

输出:

120

很多人可能困惑这里面的计算逻辑,为什么fact函数中调用了自身,最终能得到结果。

我们可以按照数学逻辑进行推演:

整数n的阶乘是:fact(n) = n*(n-1)*...*3*2*1

整数n-1的阶乘是:fact(n-1) = (n-1)*(n-2)*...*3*2*1

所以可以推断 fact(n) = n*fact(n-1)

这里是不是一种 fact方法可以为每个数所调用,最终调用到了n=1的时候,就返回结果n的阶乘。

大家看上图,递归函数会一层层往下调用,最终到n=1的时候,往上返回结果。

这就是递归的全过程,如果我们给递归下一个准确的定义,可以概括为以下3点:

1、至少有一个明确的递归结束条件;

2、给出递归终止时的处理办法;

3、每次进入更深一层递归时,问题规模(计算量)相比上次递归都应有所减少

以上面代码为例:

def factorial(n):
    ''' n表示要求的数的阶乘 '''
    if n==1: # 1、明确递归终止条件;
        return n # 2、递归终止时的处理办法
    n = n*factorial(n-1) # 递去
    return n  # 归来

除了常见的阶乘案例,还有斐波那契数列,也是递归的经典用法。

斐波那契数列:1,1,2,3,5,8,13,21,34,55,89...

这个数列从第3项开始,每一项都等于前两项之和。

它以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n≥ 2,n∈ N*)

在Python中,我们可以使用递归函数的方式去实现斐波那契数列:

# 1,1,2,3,5,8,13,21,34,55,试判断数列第12个数是哪个?
def fab(n):
    ''' n为斐波那契数列 '''
    if n <= 2:
        v = 1
        return v 
    v = fab(n-1)+fab(n-2) 
    return v  

print(fab(12)) 

使用数学方法进行推导:

  • fab(0) = 0(初始值)
  • fab(1) = 1(初始值)
  • 对所有大于1的整数n:fab(n) = fab(n-1)+ fab(n-2)(递归定义)

其实以上两个递归的案例都可以用数学归纳法来解释,就是高中数学的知识。

一般地,证明一个与自然数n有关的命题P(n),有如下步骤:

(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;

(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。

除了数学的解释,之前也看到有人对递归更加形象的解释:

1、我们已经完成了吗?如果完成了,返回结果。如果没有这样的终止条件,递归将会永远地继续下去。

2、如果没有,则简化问题,解决较容易的问题,并将结果组装成原始问题的解决办法。然后返回该解决办法。

哈哈,到这里大家是不是对递归有了一个更加深刻的认识。

如果还不清楚,没关系,这里还有更多的递归案例,用Python来实现,可以说非常简洁。

「最大公因数:」

def gcd(m, n):
    if n == 0:
        return m
    else:
        return gcd(n, m%n)

「从 1 到 n 的数字之和:」

def sumnums(n):
    if n == 1:
        return 1
    return n + sumnums(n - 1)

print(sumnums(3))

「字符串倒序:」

def reverse(string):
    if len(string) == 0:
        return string
    else:
        return reverse(string[1:]) + string[0]

reverseme = '我是帅哥'
print(reverse(reverseme))

「汉诺塔问题:」

def towerOfHanoi(numrings, from_pole, to_pole, aux_pole):
    if numrings == 1:
        print('Move ring 1 from', from_pole, 'pole to', to_pole, 'pole')
        return
    towerOfHanoi(numrings - 1, from_pole, aux_pole, to_pole)
    print('Move ring', numrings, 'from', from_pole, 'pole to', to_pole, 'pole')
    towerOfHanoi(numrings - 1, aux_pole, to_pole, from_pole)


numrings = 2
towerOfHanoi(numrings, 'Left', 'Right', 'Middle')

「二分法找有序列表指定值:」

data = [1,3,6,13,56,123,345,1024,3223,6688]
def dichotomy(min,max,d,n):
    '''
    min表示有序列表头部索引
    max表示有序列表尾部索引
    d表示有序列表
    n表示需要寻找的元素
    '''
    mid = (min+max)//2
    if mid==0:
        return 'None'
    elif d[mid]<n:
        print('向右侧找!')
        return dichotomy(mid,max,d,n)
    elif d[mid]>n:
        print('向左侧找!')
        return dichotomy(min,mid,d,n)
    else:
        print('找到了%s'%d[mid])
        return 
res = dichotomy(0,len(data),data,222)
print(res)

有位大佬说过:To Iterate is Human, to Recurse, Divine.

中文译为:人理解迭代,神理解递归。

可见递归是非常神奇的算法,它的神奇之处在于它允许用户用有限的语句描述无限的对象。

当然人无完人,递归也是有缺点的,它一般效率较低,且会导致调用栈溢出。

因为递归不断调用自身函数,且产生大量变量,而栈空间的容量是有限的,循环太多就会效率低下,甚至导致调用栈溢出

以上就是Python实例详解递归算法的详细内容,更多关于Python递归算法的资料请关注脚本之家其它相关文章!

相关文章

  • 深入解析Python中的urllib2模块

    深入解析Python中的urllib2模块

    这篇文章主要介绍了Python中的urllib2模块,包括一个利用其抓取网站生成RSS的小例子,需要的朋友可以参考下
    2015-11-11
  • Python Selenium弹窗处理操作指南

    Python Selenium弹窗处理操作指南

    我们做项目经常会遇到弹出框,下面这篇文章主要给大家介绍了关于Python Selenium弹窗处理的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-06-06
  • python算法表示概念扫盲教程

    python算法表示概念扫盲教程

    这篇文章主要为大家详细介绍了python算法表示概念扫盲教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-04-04
  • python判断无向图环是否存在的示例

    python判断无向图环是否存在的示例

    今天小编就为大家分享一篇python判断无向图环是否存在的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • 快速解决Django关闭Debug模式无法加载media图片与static静态文件

    快速解决Django关闭Debug模式无法加载media图片与static静态文件

    这篇文章主要介绍了快速解决Django关闭Debug模式无法加载media图片与static静态文件的操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • python DataFrame数据分组统计groupby()函数的使用

    python DataFrame数据分组统计groupby()函数的使用

    在python的DataFrame中对数据进行分组统计主要使用groupby()函数,本文主要介绍了python DataFrame数据分组统计groupby()函数的使用,具有一定的参考价值,感兴趣的可以了解一下
    2022-03-03
  • Python更新数据库脚本两种方法及对比介绍

    Python更新数据库脚本两种方法及对比介绍

    这篇文章给大家介绍了Python更新数据库脚本两种方法及数据库查询三种方式,然后在文章下面给大家介绍了两种方式对比介绍,非常不错,感兴趣的朋友参考下吧
    2017-07-07
  • Python selenium 实例之通过 selenium 查询禅道是否有任务或者BUG

    Python selenium 实例之通过 selenium 查询禅道是否有任务或者BUG

    这篇文章主要介绍了Python selenium 实例之通过 selenium 查询禅道是否有任务或者BUG的相关资料,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • 离线部署Python环境的详细过程

    离线部署Python环境的详细过程

    本文主要介绍了离线部署Python环境的全过程,包括前置工作、部署Python、测试Python、配置环境和验证Python五个步骤,为读者提供了详细的操作指南,希望能对需要离线部署Python环境的读者提供帮助
    2024-10-10
  • 深入讲解Python命令行解析模块argparse

    深入讲解Python命令行解析模块argparse

    Python 提供了一个解析命令行参数的标准库 argparse,可以让我们轻松编写用户友好的命令行接口,接下来我们就来详细介绍一下argparse 的使用方法吧
    2023-06-06

最新评论