关于pytorch相关部分矩阵变换函数的问题分析

 更新时间:2022年03月21日 11:05:47   作者:m0_67403240  
这篇文章主要介绍了pytorch相关部分矩阵变换函数,包括tensor维度顺序变换BCHW顺序的调整,矩阵乘法相关函数,矩阵乘,点乘,求取矩阵对角线元素或非对角线元素的问题,本文给大家介绍的非常详细,需要的朋友可以参考下

1、tensor 维度顺序变换 BCHW顺序的调整

tensor.permute(dims)

将tensor的维度换位。参数是一系列的整数,代表原来张量的维度。比如三维就有0,1,2这些dimension。

import torch
a = torch.rand(8,256,256,3)   #---> n,h,w,c
print(a.shape)
b = a.permute(0,3,1,2)  # ---> n,c,h,w
print(b.shape)
#输出
torch.Size([8, 256, 256, 3])
torch.Size([8, 3, 256, 256])

numpy内进行维度顺序变换采用_numy.transpose(a,axis=None)_

参数 a: 输入数组

axis: int类型的列表,这个参数是可选的。默认情况下,反转的输入数组的维度,当给定这个参数时,按照这个参数所定的值进行数组变换。

返回值 p: ndarray 返回转置过后的原数组的视图。

import numpy as ?np
?
x = np.random.randn(8,256,256,3) ?# ---> n,h,w,c
print(x.shape)
y=x.transpose((0,3,1,2)) ? # ?----> n,c,h,w
print(y.shape)

#输出
(8, 256, 256, 3)
(8, 3, 256, 256)

2、矩阵乘法相关函数,矩阵乘,点乘

二维矩阵乘法torch.mm()

torch.mm(mat1,mat2,out=None),其中mat1(NXM),mat2(MXD),输出out的维度为(NXD)

该函数一般只用来计算两个二维矩阵的矩阵乘法,并且不支持broadcast操作。

三维带batch的矩阵乘法 torch.bmm()
由于神经网络训练一般采用mini-batch,经常输入的时三维带batch的矩阵,所以提供torch.bmm(bmat1, bmat2, out=None),其中bmat1(b×n×mb×n×m),bmat2(b×m×db×m×d),输出out的维度是(b×n×db×n×d)。

该函数的两个输入必须是三维矩阵且第一维相同(表示Batch维度),不支持broadcast操作。

多维矩阵乘法 torch.matmul()
torch.matmul(input, other, out=None)支持broadcast操作,使用起来比较复杂。

针对多维数据 matmul()乘法,我们可以认为该matmul()乘法使用使用两个参数的后两个维度来计算,其他的维度都可以认为是batch维度。假设两个输入的维度分别是input(1000×500×99×111000×500×99×11), other(500×11×99500×11×99)那么我们可以认为torch.matmul(input, other, out=None)乘法首先是进行后两位矩阵乘法得到(99×11)×(11×99)(99×99)(99×11)×(11×99)(99×99) ,然后分析两个参数的batch size分别是 (1000×500)(1000×500) 和 500500 , 可以广播成为 (1000×500)(1000×500), 因此最终输出的维度是(1000×500×99×991000×500×99×99)。

矩阵逐元素(Element-wise)乘法 torch.mul()
torch.mul(mat1, other, out=None),其中other乘数可以是标量,也可以是任意维度的矩阵,只要满足最终相乘是可以broadcast的即可

@ :矩阵乘法,自动执行适合的矩阵乘法函数
* :element-wise乘法

3、求取矩阵对角线元素,或非对角线元素

取对角线元素可以用torch.diagonal()

x = torch.randn(4,4)
# tensor([[ 0.9148,  0.1396, -0.8974,  2.0014],
#        [ 0.1129, -0.3656,  0.4371,  0.2618],
#        [ 1.1049, -0.0774, -0.4160, -0.4922],
#        [ 1.3197, -0.2022, -0.0031, -1.3811]])

torch.diagonal(x)
# tensor([ 0.9148, -0.3656, -0.4160, -1.3811])

非对角线元素没有特定API,如果是求和,可以矩阵求和 减去对角线元素和 。

网上看到一个巧妙的非对角线元素方法

n, m = x.shape
assert n == m
x.flatten()[:-1].view(n-1,n+1)[:,1:].flatten()
# tensor([ 0.1396, -0.8974,  2.0014,  0.1129,  0.4371,  0.2618,  1.1049, -0.0774,
#        -0.4922,  1.3197, -0.2022, -0.0031])

首先利用flatten()拉直向量,然后去掉最后一个元素,得到n^2 - 1个元素,然后构造为一个维度为[N-1, N+1]的矩阵。在这个矩阵中,之前所有的对角线元素全部出现在第1列,然后根据索引获取[:, 1:]元素,得到的就是原矩阵的非对角线元素。

在这里插入图片描述

到此这篇关于pytorch相关部分矩阵变换函数的文章就介绍到这了,更多相关pytorch矩阵变换函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 详解设计模式中的proxy代理模式及在Java程序中的实现

    详解设计模式中的proxy代理模式及在Java程序中的实现

    代理模式主要分为静态代理和动态代理,使客户端方面的使用者通过设置的代理来操作对象,下面来详解设计模式中的proxy代理模式及在Java程序中的实现
    2016-05-05
  • Spring整合Dubbo框架过程及原理解析

    Spring整合Dubbo框架过程及原理解析

    这篇文章主要介绍了Spring整合Dubbo框架过程及原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12
  • Java设计模式之享元模式实例详解

    Java设计模式之享元模式实例详解

    这篇文章主要介绍了Java设计模式之享元模式,结合实例形式详细分析了享元模式的概念、功能、定义及使用方法,需要的朋友可以参考下
    2018-04-04
  • Springboot自带线程池的实现

    Springboot自带线程池的实现

    本文主要介绍了Springboot自带线程池的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-05-05
  • Java中的CGLIB动态代理的使用及原理详解

    Java中的CGLIB动态代理的使用及原理详解

    这篇文章主要介绍了Java中的CGLIB动态代理的使用及原理详解,CGLIB是一个功能强大,高性能的代码生成包,它为没有实现接口的类提供代理,为JDK的动态代理提供了很好的补充,需要的朋友可以参考下
    2023-09-09
  • 老生常谈spring boot中的定时任务

    老生常谈spring boot中的定时任务

    SpringBoot中的定时任务主要通过@Scheduled注解以及SchedulingConfigurer接口实现,本文给大家介绍spring boot中的定时任务,感兴趣的朋友跟随小编一起看看吧
    2024-05-05
  • 基于Java字符编码的使用详解

    基于Java字符编码的使用详解

    本篇文章对Java字符编码的使用进行了详细的分析介绍。需要的朋友参考下
    2013-05-05
  • mybatis-sqlserver批量新增返回id方式

    mybatis-sqlserver批量新增返回id方式

    这篇文章主要介绍了mybatis-sqlserver批量新增返回id方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-05-05
  • Java调用Windows的DOS命令的方法

    Java调用Windows的DOS命令的方法

    这篇文章主要介绍了Java调用Windows的DOS命令的方法,其主要内容思路是实现调用Windows的ipconfig命令,然后将输出的信息通过IO流输出到控制台。有需要的小伙伴参考下
    2015-02-02
  • 解读@RabbitListener起作用的原理

    解读@RabbitListener起作用的原理

    这篇文章主要介绍了解读@RabbitListener起作用的原理,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-03-03

最新评论