pytorch创建tensor函数详情

 更新时间:2022年03月22日 10:42:13   作者:就是一顿骚操作  
这篇文章主要介绍了pytorch创建tensor函数详情,文章围绕tensor函数的相关自来哦展开详细内容的介绍,需要的小伙伴可以参考一下,希望对你有所帮助

1、通过复制数据构造张量

1.1 torch.tensor()

torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
Out[111]: 
tensor([[0.1000, 1.2000],
        [2.2000, 3.1000],
        [4.9000, 5.2000]])
torch.tensor([0, 1]) 
Out[112]: tensor([0, 1])
torch.tensor([[0.11111, 0.222222, 0.3333333]],
             dtype=torch.float64,              device=torch.device('cpu'))
Out[113]: tensor([[0.1111, 0.2222, 0.3333]], dtype=torch.float64)
torch.tensor(3.14159)
Out[114]: tensor(3.1416)
torch.tensor([]) 
Out[115]: tensor([])

torch.tensor([[0.11111, 0.222222, 0.3333333]],
             dtype=torch.float64,              device=torch.device('cpu'), requires_grad=True, pin_memory=False)
Out[117]: tensor([[0.1111, 0.2222, 0.3333]], dtype=torch.float64, requires_grad=True)
  • dtype(torch.dtype,可选)–返回张量的所需数据类型。默认值:如果没有,则根据数据推断数据类型。
  • device(torch.device,可选)–构造张量的装置。如果没有,并且数据是张量,那么就使用数据设备。如果没有且数据不是张量,则结果张量在CPU上构造。
  • require_grad(bool,可选)– 是否需要保留梯度信息。默认值:False。
  • pin_memory(bool,可选)–如果设置了,返回的张量将分配到pind内存中。仅适用于CPU张量。默认值:False。

1.2 将numpy的ndarray转为tensor

>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a)
>>> t
tensor([1, 2, 3])
>>> t[0] = -1
>>> a
array([-1,  2,  3])
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a, device=torch.device('cuda'))
>>> t[0] = -1
>>> a
array([1, 2, 3])

t = torch.as_tensor([2, 2, 2], device=torch.device('cuda'))
>>> t
tensor([2, 2, 2], device='cuda:0')

a = numpy.array([1, 2, 3])
t = torch.from_numpy(a)
t
Out[38]: tensor([1, 2, 3])
t[0] = -1
a
Out[40]: array([-1,  2,  3])

2、生成全0或者全1的tensor

torch.zeros(2, 3)
Out[41]: 
tensor([[0., 0., 0.],
        [0., 0., 0.]])
torch.zeros(5)
Out[42]: tensor([0., 0., 0., 0., 0.])

torch.ones(2, 3)
Out[43]: 
tensor([[1., 1., 1.],
        [1., 1., 1.]])
torch.ones(5)
Out[44]: tensor([1., 1., 1., 1., 1.])

参数列表:

  • out:输出的对象
  • dtype: 返回的张量的所需数据类型。默认值:如果没有,则使用全局默认值(请参阅torch.set_Default_tensor_type())。
  • layout
  • device: 构造张量的装置。如果没有,并且数据是张量,那么就使用数据设备。如果没有且数据不是张量,则结果张量在CPU上构造。
  • requires_grad: 是否需要保留梯度信息。默认值:False。

3、生成序列

3.1、 生成一个指定步长的等差序列

torch.arange(5)
Out[45]: tensor([0, 1, 2, 3, 4])
torch.arange(1, 4)
Out[46]: tensor([1, 2, 3])
torch.arange(1, 2.5, 0.5)
Out[47]: tensor([1.0000, 1.5000, 2.0000])
  • start: 点集的开始值。默认值:0。
  • end: 点集的结束值
  • step: 每对相邻点之间的间隙。默认值:1,可以是小数。

3.2 生成一个指定步数的等差数列

torch.linspace(3, 10, steps=5)
Out[49]: tensor([ 3.0000,  4.7500,  6.5000,  8.2500, 10.0000])
torch.linspace(-10, 10, steps=5)
Out[50]: tensor([-10.,  -5.,   0.,   5.,  10.])
torch.linspace(start=-10, end=10, steps=1)
Out[51]: tensor([-10.])

4、生成指定大小的单位矩阵

torch.eye(3)
Out[58]: 
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.]])

5、生成一个指定大小张量

torch.empty((2,3), dtype=torch.int64)
Out[59]: 
tensor([[0, 0, 0],
        [0, 0, 2]])

6、 创建一个指定大小的张量。张量的数据是填充的指定值

torch.full((2, 3), 3.141592)
Out[67]: 
tensor([[3.1416, 3.1416, 3.1416],
        [3.1416, 3.1416, 3.1416]])

到此这篇关于pytorch创建tensor函数详情的文章就介绍到这了,更多相关pytorch创建tensor函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • pycharm中python解释器的配置方式

    pycharm中python解释器的配置方式

    这篇文章主要介绍了pycharm中python解释器的配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • python multiprocessing 多进程并行计算的操作

    python multiprocessing 多进程并行计算的操作

    这篇文章主要介绍了python multiprocessing 多进程并行计算的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python3.9.1中使用match方法详解

    Python3.9.1中使用match方法详解

    这篇文章主要介绍了Python3.9.1中使用match方法详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • Python分析特征数据类别与预处理方法速学

    Python分析特征数据类别与预处理方法速学

    这篇文章主要为大家介绍了Python分析特征数据类别与预处理方法速学,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • pycharm三个有引号不能自动生成函数注释的问题

    pycharm三个有引号不能自动生成函数注释的问题

    这篇文章主要介绍了解决pycharm三个有引号不能自动生成函数注释的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-02-02
  • python 容器总结整理

    python 容器总结整理

    这篇文章主要介绍了python 容器总结整理的相关资料,需要的朋友可以参考下
    2017-04-04
  • Python教程之基本运算符的使用(下)

    Python教程之基本运算符的使用(下)

    Python运算符通常用于对值和变量执行操作。这些是用于逻辑和算术运算的标准符号。在本文中,我们将研究运算符的优先级和关联性,感兴趣的可以了解一下
    2022-09-09
  • Python获取单个程序CPU使用情况趋势图

    Python获取单个程序CPU使用情况趋势图

    这篇文章主要介绍了Python获取单个程序CPU使用情况趋势图,本文使用matplotlib将数据可视化,需要的朋友可以参考下
    2015-03-03
  • python爬取网站数据保存使用的方法

    python爬取网站数据保存使用的方法

    这篇文章主要介绍了使用Python从网上爬取特定属性数据保存的方法,其中解决了编码问题和如何使用正则匹配数据的方法,详情看下文
    2013-11-11
  • 信号生成及DFT的python实现方式

    信号生成及DFT的python实现方式

    今天小编就为大家分享一篇信号生成及DFT的python实现方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02

最新评论