使用pandas计算环比和同比的方法实例

 更新时间:2022年03月25日 09:11:55   作者:theskylife  
同比和环比都是为了显示数据的变化速度,但是基数不同,同比侧重长期数据趋势变化,环比侧重于短期内数据趋势变化,下面这篇文章主要给大家介绍了关于如何使用pandas计算环比和同比的相关资料,需要的朋友可以参考下

前言

在进行业务数据分析时,往往需要使用pandas计算环比、同比及增长率等指标,为了能够更加方便的进行的统计数据,整理方法如下。

1.数据准备

为方便进行演示,此处提前生成需要进行统计的数据,数据已经是按照时间维度进行排序。

months = pd.date_range(start='2010-01-01', end='2020-12-31', freq='M')
test_df = pd.DataFrame({'month': months,
                  'v': 100*np.random.rand(months.shape[0], 1).reshape(months.shape[0])})

2.环比计算

2.1 方法1

test_df['v_last']=test_df['v'].shift(1)
test_df['month_erlier_1']=test_df['v']/test_df['v_last']-1

2.2 方法2

test_df['m_m_diff']=test_df['v'].diff()
test_df['month_erlier_2']=test_df['m_m_diff']/test_df['v'].shift(1)

2.3 方法3

test_df['month_erlier_3']=test_df['v'].pct_change()

3.同比计算

继续使用上述构建的数据源进行计算。

3.1 方法1

test_df["last_year_v"]=test_df['v'].shift(12)
test_df['year_erlier_1']=test_df['v']/test_df['last_year_v']-12

3.2 方法2

test_df["year_diff"]=test_df['v'].diff(12)
test_df['year_diff'].fillna(0,inplace=True)
test_df['year_erlier_2']=test_df['year_diff']/(test_df['v']-test_df['year_diff'])

3.3 方法3

test_df['year_erlier_3']=test_df["v"].pct_change(periods=12)

4.关于pct_change()函数

pct_change主要涉及一下参数:

  • periods=1,用来设置计算的周期。
  • fill_method=‘pad’,如何在计算百分比变化之前处理缺失值(NA)。
  • limit=None,设置停止填充条件,即当遇到填充的连续缺失值的数量n时,停止此处填充
  • freq=None,从时间序列 API 中使用的增量(例如 ‘M’ 或 BDay())

4.1 使用例子1

#构建数据
months = pd.date_range(start='2020-01-01', end='2020-12-31', freq='M')
test_df2 = pd.DataFrame({'month': months,
                  'v': 100*np.random.rand(months.shape[0], 1).reshape(months.shape[0])})
test_df2.loc[((test_df2.index>5) & (test_df2.index<9) ),'v']=np.nan
test_df2.loc[test_df2.index==3,'v']=np.nan
test_df2.loc[test_df2.index==10,'v']=np.nan

数据展示:

原始数据

计算环比:

#向下进行填充,当连续缺失值的数量大于2时不进行填充
test_df2['v'].pct_change(1,fill_method='ffill',limit=2)

计算效果图:

环比计算

4.2 使用例子2

# 生成样本数据
test_df3 = pd.DataFrame({'2020': 100*np.random.rand(5).reshape(5),
                         '2019': 100*np.random.rand(5).reshape(5),
                         '2018':  100*np.random.rand(5).reshape(5)})

样本数据截图:

样本2

计算同环比:

test_df3.pct_change(axis='columns',periods=-1)

计算效果截图:

计算结果2

4.3 使用例子3

#构建数据样本
months = pd.date_range(start='2020-01-01', end='2020-12-31', freq='M')

test_df4 = pd.DataFrame({
    'v': 100*np.random.rand(months.shape[0], 1).reshape(months.shape[0])}, index=months)

数据样本截图:

样本3

计算季度末环比:

test_df4["v"].pct_change(freq="Q")

计算效果图:

季末计算环比

计算过程解释:

2020-03-31行处的值:使用3月份和1月份进行环比,即55.717305/84.492806-1
2020-06-30行处的值:使用6月份和3月份进行环比

计算环比增长

方法一:

for i in range(0,len(data)):
    if i == 0:
        data['huanbi'][i] = 'null'
    else:
        data['huanbi'][i] = format((data['mony'][i] - data['mony'][i-1])/data['mony'][i-1],'.2%')
        #format(res,'.2%') 小数格式化为百分数

方法二:

使用diff(periods=1, axis=0)) 一阶差分函数

periods:移动的幅度 默认值为1

axis:移动的方向,{0 or ‘index’, 1 or ‘columns’},如果为0或者’index’,则上下移动,如果为1或者’columns’,则左右移动。默认列向移动

data['huanbi_1'] = data.mony.diff()

方法三:

使用pct_change()

data['huanbi_1'] = data.mony.pct_change()
data.fillna(0,inplace=True)

计算同比增长

使用一阶差分函数diff()

data['tongbi_shu'] = data.mony.diff(12)
data.fillna(0,inplace=True)
data['tongbi'] = data['tongbi_shu']/(data['mony'] - data['tongbi_shu'])
``

5.后记

以上就是时候用pandas进行计算同比和环比的方法,请在使用过程中,结合数据情况先进行数据清洗后,再选择合适的方法进行计算。

到此这篇关于使用pandas计算环比和同比的文章就介绍到这了,更多相关pandas计算环比和同比内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python使用asyncio处理异步编程的代码示例

    Python使用asyncio处理异步编程的代码示例

    在 Python 中,异步编程可以使用 asyncio 库,该库提供了一些工具和功能来编写异步代码,本文介绍了处理异步编程的几个关键概念和示例,需要的朋友可以参考下
    2024-07-07
  • Python遍历文件夹和读写文件的实现代码

    Python遍历文件夹和读写文件的实现代码

    这篇文章主要介绍了Python遍历文件夹和读写文件的实现代码,需要的朋友可以参考下
    2016-08-08
  • python学习之panda数据分析核心支持库

    python学习之panda数据分析核心支持库

    这篇文章主要给大家介绍了关于python学习之panda数据分析核心支持库的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • 对于Python的Django框架使用的一些实用建议

    对于Python的Django框架使用的一些实用建议

    这篇文章主要介绍了对于Python的Django框架使用的一些实用建议,包括一些优秀模块的介绍,要的朋友可以参考下
    2015-04-04
  • python3中编码获取网页的实例方法

    python3中编码获取网页的实例方法

    在本篇文章里小编给大家整理了一篇关于python3中编码获取网页的实例方法,有兴趣的朋友们可以学习下。
    2020-11-11
  • 浅谈Tensorflow由于版本问题出现的几种错误及解决方法

    浅谈Tensorflow由于版本问题出现的几种错误及解决方法

    今天小编就为大家分享一篇浅谈Tensorflow由于版本问题出现的几种错误及解决方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • Python中的logging模块实现日志打印

    Python中的logging模块实现日志打印

    这篇文章主要介绍了Python中的logging模块实现日志打印,其实不止print打印日志方便排查问题,Python自带的logging模块,也可以很简单就能实现日志的配置和打印,下面来看看具体的实现过程吧,需要的朋友可以参考一下
    2022-03-03
  • django实现分页的方法

    django实现分页的方法

    这篇文章主要介绍了django实现分页的方法,实例分析了django分页的技巧与Paginator对象的用法,需要的朋友可以参考下
    2015-05-05
  • 详解Python基础random模块随机数的生成

    详解Python基础random模块随机数的生成

    这篇文章主要介绍了Python基础random模块随机数的生成,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • Python编码时应该注意的几个情况

    Python编码时应该注意的几个情况

    对于Python程序员,你需要注意一下本文所提到的这些事情。你也可以看看Zen of Python(Python之禅),这里面提到了一些注意事项,并配以示例,可以帮助你快速提高
    2013-03-03

最新评论