深入了解SparkSQL的运用及方法

 更新时间:2022年03月30日 11:42:31   作者:那人独钓寒江雪.  
SparkSQL就是将SQL转换成一个任务,提交到集群上运行,类似于Hive的执行方式。本文给大家分享了SparkSQl的运用及方法,感兴趣的朋友跟随小编一起看看吧

一:SparkSQL

1.SparkSQL简介

Spark SQL是Spark的一个模块,用于处理结构化的数据,它提供了一个数据抽象DataFrame(最核心的编程抽象就是DataFrame),并且SparkSQL作为分布式SQL查询引擎。
Spark SQL就是将SQL转换成一个任务,提交到集群上运行,类似于Hive的执行方式。

2.SparkSQL运行原理

将Spark SQL转化为RDD,然后提交到集群执行。

3.SparkSQL特点

(1)容易整合,Spark SQL已经集成在Spark中

(2)提供了统一的数据访问方式:JSON、CSV、JDBC、Parquet等都是使用统一的方式进行访问

(3)兼容 Hive

(4)标准的数据连接:JDBC、ODBC

二、SparkSQL运用

package sql

import org.apache.avro.ipc.specific.Person
import org.apache.spark
import org.apache.spark.rdd.RDD
import org.apache.spark.sql
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
import org.junit.Test

class Intro {
  @Test
  def dsIntro(): Unit ={
    val spark: SparkSession = new sql.SparkSession.Builder()
      .appName("ds intro")
      .master("local[6]")
      .getOrCreate()

    //导入隐算是shi转换
    import spark.implicits._

    val sourceRDD: RDD[Person] =spark.sparkContext.parallelize(Seq(Person("张三",10),Person("李四",15)))
    val personDS: Dataset[Person] =sourceRDD.toDS();
//personDS.printSchema()打印出错信息

    val resultDS: Dataset[Person] =personDS.where('age>10)
      .select('name,'age)
      .as[Person]
    resultDS.show()

  }
  @Test
  def dfIntro(): Unit ={
    val spark: SparkSession =new SparkSession.Builder()
      .appName("ds intro")
      .master("local")
      .getOrCreate()

    import spark.implicits._
    val sourceRDD: RDD[Person] = spark.sparkContext.parallelize(Seq(Person("张三",10),Person("李四",15)))
    val df: DataFrame = sourceRDD.toDF()//隐shi转换

    df.createOrReplaceTempView("person")//创建表
    val resultDF: DataFrame =spark.sql("select name from person where age>=10 and age<=20")
    resultDF.show()

  }
  @Test
  def database1(): Unit ={
    //1.创建sparkSession
    val spark: SparkSession =new SparkSession.Builder()
      .appName("database1")
      .master("local[6]")
      .getOrCreate()
      //2.导入引入shi子转换
    import spark.implicits._

    //3.演示
    val sourceRDD: RDD[Person] =spark.sparkContext.parallelize(Seq(Person("张三",10),Person("李四",15)))
    val dataset: Dataset[Person] =sourceRDD.toDS()

    //Dataset 支持强类型的API
    dataset.filter(item => item.age >10).show()
    //Dataset 支持若弱类型的API
    dataset.filter('age>10).show()
    //Dataset 可以直接编写SQL表达式
    dataset.filter("age>10").show()
  }

  @Test
  def database2(): Unit ={
    val spark: SparkSession = new SparkSession.Builder()
      .master("local[6]")
      .appName("database2")
      .getOrCreate()
    import spark.implicits._

    val dataset: Dataset[Person] =spark.createDataset(Seq(Person("张三",10),Person("李四",20)))
    //无论Dataset中放置的是什么类型的对象,最终执行计划中的RDD上都是internalRow
    //直接获取到已经分析和解析过得Dataset的执行计划,从中拿到RDD
    val executionRdd: RDD[InternalRow] =dataset.queryExecution.toRdd

    //通过将Dataset底层的RDD通过Decoder转成了和Dataset一样的类型RDD
    val typedRdd:RDD[Person] = dataset.rdd

    println(executionRdd.toDebugString)
    println()
    println()
    println(typedRdd.toDebugString)
  }

  @Test
  def database3(): Unit = {
    //1.创建sparkSession
    val spark: SparkSession = new SparkSession.Builder()
      .appName("database1")
      .master("local[6]")
      .getOrCreate()
    //2.导入引入shi子转换
    import spark.implicits._

    val dataFrame: DataFrame = Seq(Person("zhangsan", 15), Person("lisi", 20)).toDF()
    //3.看看DataFrame可以玩出什么花样
    //select name from...
    dataFrame.where('age > 10)
      .select('name)
      .show()
  }
//  @Test
//  def database4(): Unit = {
//    //1.创建sparkSession
//    val spark: SparkSession = new SparkSession.Builder()
//      .appName("database1")
//      .master("local[6]")
//      .getOrCreate()
//    //2.导入引入shi子转换
//    import spark.implicits._
//    val personList=Seq(Person("zhangsan",15),Person("lisi",20))
//
//    //1.toDF
//    val df1: DataFrame =personList.toDF()
//    val df2: DataFrame =spark.sparkContext.parallelize(personList).toDF()
//      //2.createDataFrame
//    val df3: DataFrame =spark.createDataFrame(personList)
//
//    //3.read
//    val df4: DataFrame =spark.read.csv("")
//    df4.show()
//  }
  //toDF()是转成DataFrame,toDs是转成Dataset
  //  DataFrame就是Dataset[Row] 代表弱类型的操作,Dataset代表强类型的操作,中的类型永远是row,DataFrame可以做到运行时类型安全,Dataset可以做到 编译时和运行时都安全
@Test
def database4(): Unit = {
  //1.创建sparkSession
  val spark: SparkSession = new SparkSession.Builder()
    .appName("database1")
    .master("local[6]")
    .getOrCreate()
  //2.导入引入shi子转换
  import spark.implicits._
  val personList=Seq(Person("zhangsan",15),Person("lisi",20))
  //DataFrame代表弱类型操作是编译时不安全
  val df: DataFrame =personList.toDF()

  //Dataset是强类型的
  val ds: Dataset[Person] =personList.toDS()
  ds.map((person:Person) =>Person(person.name,person.age))
}
  @Test
  def row(): Unit ={
    //1.Row如何创建,它是什么
    //row对象必须配合Schema对象才会有列名
    val p: Person =Person("zhangsan",15)
    val row: Row =Row("zhangsan",15)
    //2.如何从row中获取数据
    row.getString(0)
    row.getInt(1)
    //3.Row也是样例类、
    row match {
      case Row(name,age) => println(name,age)
    }
  }

}
case class Person(name: String, age: Int)

到此这篇关于深入了解SparkSQL的运用及方法的文章就介绍到这了,更多相关SparkSQL运用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Springboot居然可以设置动态的Banner(推荐)

    Springboot居然可以设置动态的Banner(推荐)

    这篇文章主要介绍了Springboot居然可以设置动态的Banner,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • AQS加锁机制Synchronized相似点详解

    AQS加锁机制Synchronized相似点详解

    这篇文章主要为大家介绍了AQS加锁机制Synchronized相似点详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-10-10
  • 详解springboot+mybatis-plue实现内置的CRUD使用详情

    详解springboot+mybatis-plue实现内置的CRUD使用详情

    这篇文章主要介绍了详解springboot+mybatis-plue实现内置的CRUD使用详情,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • Java超详细分析垃圾回收机制

    Java超详细分析垃圾回收机制

    一个运行中的程序, 产生的对象是大量的, 如果对象不被继续使用, 就会成为垃圾, 最后越堆越多, 最后占满内存, 所以我们要对这些垃圾进行回收,保持程序的正常运行
    2022-05-05
  • idea切换git地址并刷新右下角git分支

    idea切换git地址并刷新右下角git分支

    这篇文章主要介绍了idea切换git地址并刷新右下角git分支,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • java 画pdf用itext调整表格宽度、自定义各个列宽的方法

    java 画pdf用itext调整表格宽度、自定义各个列宽的方法

    这篇文章主要介绍了java 画pdf用itext调整表格宽度、自定义各个列宽的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-01-01
  • Java如何加载外部Jar的类并通过反射调用类的方法

    Java如何加载外部Jar的类并通过反射调用类的方法

    这篇文章主要介绍了Java如何加载外部Jar的类并通过反射调用类的方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • SpringSecurity登录使用JSON格式数据的方法

    SpringSecurity登录使用JSON格式数据的方法

    这篇文章主要介绍了SpringSecurity登录使用JSON格式数据的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-02-02
  • spring data jpa如何使用自定义repository实现类

    spring data jpa如何使用自定义repository实现类

    这篇文章主要介绍了spring data jpa如何使用自定义repository实现类,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-11-11
  • SpringBoot结合Vue实现投票系统过程详解

    SpringBoot结合Vue实现投票系统过程详解

    这篇文章主要介绍了SpringBoot+Vue框架实现投票功能的项目系统,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2022-09-09

最新评论