OpenCV实现常见的四种图像几何变换

 更新时间:2022年04月01日 09:48:10   作者:侯小啾  
这篇文章主要介绍了利用OpenCV实现的四种图像几何变换:缩放、翻转、仿射变换及透视。文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编学习一下

准备图片

选择一张shape为(500,500,3)的梵高的《星月夜》以便示例。

1. 缩放 cv2.resize()方法

cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)

src 原图(的数组)

dsize: 输出图像的大小 格式:(a,b)。

设定dsize后就无需再设置fx和fy

fx 可选参数 水平方向缩放比

fy 可选参数 垂直方向缩放比

fx和fy不同于dsize,fx和fy是各是一个比值,如设为2,则表示放大2倍,设为1/2则表示缩小到原来的1/2

import cv2
img = cv2.imread("The_Starry_Night.jpg")

dst1 = cv2.resize(img, (200, 200))
dst2 = cv2.resize(img, (900, 900))
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

执行结果如图所示,相比原图,图像得到了指定大小的缩小与放大。

使用fx和fy参数,则需要手动把dsize设为None。

import cv2
img = cv2.imread("The_Starry_Night.jpg")  
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1 / 3, fy=1 / 2) 
# 将宽高扩大2倍
dst4 = cv2.resize(img, None, fx=2, fy=2)  
cv2.imshow("img", img)
cv2.imshow("dst3", dst3) 
cv2.imshow("dst4", dst4) 
cv2.waitKey() 
cv2.destroyAllWindows()  

结果呈现:

2. 翻转 cv2.flip()方法

flip(src, flipCode, dst=None)

src 图像(数组)

flipCode 翻转代码。可以是0,正数,负数。0表示沿X轴(水平方向的轴)翻转。1表示沿Y轴(竖直方向的轴)翻转。

负数表示同时沿X轴和Y轴翻转。

讲原图经过着三种翻转后,与原图拼在一块,呈现出了这种奇观:

import cv2
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

将翻转结果放在同一张画布中

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
a, b, c = img.shape
canvas = np.ones((2 * a, 2 * b, c), np.uint8) * 255
canvas[0:b, 0:a] = img
canvas[b:2*b, 0:a] = dst1
canvas[0:b, a:2*a] = dst2
canvas[b:2*b, a:2*a] = dst3
cv2.imshow("pic", canvas)
cv2.waitKey()
cv2.destroyAllWindows()
# 保存图片
# cv2.imwrite("final_pic", canvas)

结果呈现:

3. 仿射变换 warpAffine()方法

常见的仿射变换有平移,旋转和倾斜变换。

仿射变换使用cv2.warpAffine()方法完成

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)

src 原图

M 是一个二行三列的矩阵,也称仿射矩阵。warpAffine方法根据此矩阵的值来变换像素的位置。

M = [[a, b, c], [d, e, f]],则像素的变换公式为:

X = x × a + y × b + c

Y = x × d + y × e + f

其中x,y指原像素的x、y轴坐标。X,Y指变换后的X,Y坐标。

dsize 输出图像的尺寸。(不带放缩,增大的部分用黑色色素(0)填充)

这三个参数是常用的参数。其余参数建议使用默认值。

flags表示插入方式,borderMode是边界类型,borderValue表示边界值(默认0)。dst表示反射变换后输出的图像。

3.1 平移

以将《星月夜》向左平移50个像素,向下平移100个像素为例。

则M数组应写为[[1, 0, 50], [0, 1, 100]]:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]]) 
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

如图所示,图像按照我们的预期成功被平移。

只是这样得到的图像有色素损失,我们丢失了超出画布之外的数据。

为了避免损失,可以取设置dsize参数来控制输出图像的大小。

修改后的代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]])
dst = cv2.warpAffine(img, M, (cols+200, rows+200))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

优化后的程序执行效果:

3.2 旋转

旋转也是通过M矩阵来实现的,这个矩阵的运算较复杂,

OpenCV提供了getRotationMatrix2D()方法来计算旋转操作的M矩阵

getRotationMatrix2D(center, angle, scale)

center 指旋转中心的坐标

angle指旋转的角度

scale值缩放的比例。(旋转过程支持缩放)

import cv2
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img) 
cols = len(img[0]) 
center = (rows / 2, cols / 2) 
M = cv2.getRotationMatrix2D(center, 30, 0.8) 
dst = cv2.warpAffine(img, M, (cols, rows)) 
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()  

旋转效果如图所示:

3.3 倾斜

OpenCV需要定位到图像的三个点的位置来计算倾斜效果,即左上角,右上角和左下角。

图像的倾斜也是根据M矩阵实现,得出矩阵的运算较复杂,通过getAffineTransform 方法实现。

语法

getAffineTransform(src, dst)

src是原图像的左上角,右上角和左下角三个点的坐标。三维数组格式,形如[[a, b], [c, d], [e, f]]。

dst是倾斜后这三个点预期的坐标。格式同上。

要保持左上,右下,左下三个点的顺序不能乱。

以将《星月夜》保持左下角和右上角坐标不变,左上角((0,0)处)向右移动150个像素长度。

代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
p1 = np.array([[0, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
p2 = np.array([[150, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()

程序执行效果如下:

4. 透视

透视的实现使用的是warpPerspective()方法,而不再是用于平移、旋转、倾斜的warpAffine()方法。

使用warpPerspective()方法也需要通过M矩阵来计算透视效果,计算透视的M矩阵可以使用getPerspectiveTransform()方法。

getPerspectiveTransform(src, dst, solveMethod=None)

该方法常用的参数有两个,分别为原图的四个点的坐标(scr) 和 透视后四个点的坐标(dst)。Opcv需要通过定位图像的这四个点来计算透视效果。四个点依次为左上,右上,左下,右下。

坐标格式为二维数组格式,形如[[a, b],[c, d],[e, f],[g, h]]。

示例代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
# 原图的四点坐标
p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
# 透视后的四点坐标
p2 = np.zeros((4, 2), np.float32)
p2[0] = [150, 0]
p2[1] = [cols - 150, 0]
p2[2] = [0, rows - 1]  # 不变
p2[3] = [cols - 1, rows - 1]  # 不变
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow('The_Starry_Night', img)
cv2.imshow('The_Starry_Night2', dst)
cv2.waitKey()
cv2.destroyAllWindows()

展示原图和透视后的图像效果:

到此这篇关于OpenCV实现常见的四种图像几何变换的文章就介绍到这了,更多相关OpenCV图像几何变换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用 python 实现单人AI 扫雷游戏

    使用 python 实现单人AI 扫雷游戏

    这篇文章主要介绍了使用 python 实现单人AI 扫雷游戏,今天我们用 Python 完成这个小程序,并且用AI来学习并实现它,需要的朋友可以参考下
    2021-08-08
  • Python装饰器基础详解

    Python装饰器基础详解

    装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。接下来通过本文给大家介绍python装饰器基础,对python装饰器相关知识感兴趣的朋友一起学习吧
    2016-03-03
  • 搭建python django虚拟环境完整步骤详解

    搭建python django虚拟环境完整步骤详解

    这篇文章主要介绍了搭建python django虚拟环境完整步骤详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python数据可视化实践之使用Matplotlib绘制图表

    Python数据可视化实践之使用Matplotlib绘制图表

    数据可视化是数据分析的重要环节,通过将数据转化为图形,可以更直观地展示数据特征和规律。Python中的Matplotlib库是一个强大的数据可视化工具,本文将带您了解Matplotlib的基本使用方法,以及如何绘制常见的图表
    2023-05-05
  • 用PyQt进行Python图形界面的程序的开发的入门指引

    用PyQt进行Python图形界面的程序的开发的入门指引

    这篇文章主要介绍了用PyQt进行Python图形界面的程序的开发的入门指引,来自于IBM官方网站技术文档,需要的朋友可以参考下
    2015-04-04
  • Python的Flask框架中@app.route的用法教程

    Python的Flask框架中@app.route的用法教程

    这篇文章主要介绍了Python的Flask框架中@app.route的用法教程,包括相关的正则表达式讲解,是Flask学习过程当中的基础知识,需要的朋友可以参考下
    2015-03-03
  • 使用python实现3D聚类图示例代码

    使用python实现3D聚类图示例代码

    这篇文章主要介绍了使用python实现3D聚类图效果,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-08-08
  • python fabric实现远程部署

    python fabric实现远程部署

    这篇文章主要为大家详细介绍了 python fabric实现远程部署,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-01-01
  • pyspark给dataframe增加新的一列的实现示例

    pyspark给dataframe增加新的一列的实现示例

    这篇文章主要介绍了pyspark给dataframe增加新的一列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • 深入浅析python变量加逗号,的含义

    深入浅析python变量加逗号,的含义

    这篇文章主要介绍了python变量加逗号,的含义,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-02-02

最新评论