PyTorch device与cuda.device用法介绍
1 查看当前的device
输入情况:
import torch print("Default Device : {}".format(torch.Tensor([4, 5, 6]).device))
输出情况:
Default Device : cpu
2 cpu设备可以使用“cpu:0”来指定
输入情况
device = torch.Tensor([1, 2, 3], device="cpu:0").device print("Device Type: {}".format(device))
输出情况
Device Type: cpu
3 gpu设备可以使用“cuda:0”来指定
输入情况
gpu = torch.device("cuda:0") print("GPU Device:【{}:{}】".format(gpu.type, gpu.index))
输出情况
GPU Device:【cuda:0】
4 查询CPU和GPU设备数量
输入情况
print("Total GPU Count :{}".format(torch.cuda.device_count())) print("Total CPU Count :{}".format(torch.cuda.os.cpu_count()))
输出情况
Total GPU Count :1
Total CPU Count :8
5 从CPU设备上转换到GPU设备
5.1 torch.Tensor方法默认使用CPU设备
输入情况
data = torch.Tensor([[1, 4, 7], [3, 6, 9], [2, 5, 8]]) print(data.shape)
输出情况
torch.Size([3, 3])
5.2 使用to方法将cpu的Tensor转换到GPU设备上
输入情况:
data_gpu = data.to(torch.device("cuda:0")) print(data_gpu.device)
输出情况:
cuda:0
5.3 使用.cuda方法将cpu的Tensor转换到GPU设备上
输入情况:
data_gpu2 = data.cuda(torch.device("cuda:0")) # 如果只有一块gpu的话 直接写成这样:data_gpu2 = data.cuda() print(data_gpu2.device)
输出情况:
cuda:0
到此这篇关于PyTorch device与cuda.device用法的文章就介绍到这了,更多相关PyTorch device使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python人工智能tensorflow函数tf.nn.dropout使用方法
这篇文章主要为大家介绍了python人工智能tensorflow函数tf.nn.dropout使用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-05-05Python wxPython库使用wx.ListBox创建列表框示例
这篇文章主要介绍了Python wxPython库使用wx.ListBox创建列表框,结合实例形式分析了wxPython库使用wx.ListBox创建列表框的简单实现方法及ListBox函数相关选项的功能,需要的朋友可以参考下2018-09-09python使用pip安装模块出现ReadTimeoutError: HTTPSConnectionPool的解决方法
这篇文章主要介绍了python使用pip安装模块出现ReadTimeoutError: HTTPSConnectionPool的解决方法,需要的朋友可以参考下2019-10-10Python操作MongoDB数据库PyMongo库使用方法
这篇文章主要介绍了Python操作MongoDB数据库PyMongo库使用方法,本文讲解了创建连接、连接数据库、连接聚集、查看全部聚集名称、查看聚集的一条记录等操作方法,需要的朋友可以参考下2015-04-04
最新评论