victoriaMetrics库布隆过滤器初始化及使用详解

 更新时间:2022年04月05日 10:46:49   作者:charlieroro  
这篇文章主要为大家介绍了victoriaMetrics库布隆过滤器初始化及使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪

代码路径:/lib/bloomfilter

概述

victoriaMetrics的vmstorage组件会接收上游传递过来的指标,在现实场景中,指标或瞬时指标的数量级可能会非常恐怖,如果不限制缓存的大小,有可能会由于cache miss而导致出现过高的slow insert

为此,vmstorage提供了两个参数:maxHourlySeriesmaxDailySeries,用于限制每小时/每天添加到缓存的唯一序列。

唯一序列指表示唯一的时间序列,如metrics{label1="value1",label2="value2"}属于一个时间序列,但多条不同值的metrics{label1="value1",label2="value2"}属于同一条时间序列。victoriaMetrics使用如下方式来获取时序的唯一标识:

func getLabelsHash(labels []prompbmarshal.Label) uint64 {
	bb := labelsHashBufPool.Get()
	b := bb.B[:0]
	for _, label := range labels {
		b = append(b, label.Name...)
		b = append(b, label.Value...)
	}
	h := xxhash.Sum64(b)
	bb.B = b
	labelsHashBufPool.Put(bb)
	return h
}

限速器的初始化

victoriaMetrics使用了一个类似限速器的概念,限制每小时/每天新增的唯一序列,但与普通的限速器不同的是,它需要在序列级别进行限制,即判断某个序列是否是新的唯一序列,如果是,则需要进一步判断一段时间内缓存中新的时序数目是否超过限制,而不是简单地在请求层面进行限制。

hourlySeriesLimiter = bloomfilter.NewLimiter(*maxHourlySeries, time.Hour)
dailySeriesLimiter = bloomfilter.NewLimiter(*maxDailySeries, 24*time.Hour)

下面是新建限速器的函数,传入一个最大(序列)值,以及一个刷新时间。该函数中会:

  • 初始化一个限速器,限速器的最大元素个数为maxItems
  • 则启用了一个goroutine,当时间达到refreshInterval时会重置限速器
func NewLimiter(maxItems int, refreshInterval time.Duration) *Limiter {
	l := &Limiter{
		maxItems: maxItems,
		stopCh:   make(chan struct{}),
	}
	l.v.Store(newLimiter(maxItems)) //1
	l.wg.Add(1)
	go func() {
		defer l.wg.Done()
		t := time.NewTicker(refreshInterval)
		defer t.Stop()
		for {
			select {
			case <-t.C:
				l.v.Store(newLimiter(maxItems))//2
			case <-l.stopCh:
				return
			}
		}
	}()
	return l
}

限速器只有一个核心函数Add,当vmstorage接收到一个指标之后,会(通过getLabelsHash计算该指标的唯一标识(h),然后调用下面的Add函数来判断该唯一标识是否存在于缓存中。

如果当前存储的元素个数大于等于允许的最大元素,则通过过滤器判断缓存中是否已经存在该元素;否则将该元素直接加入过滤器中,后续允许将该元素加入到缓存中。

func (l *Limiter) Add(h uint64) bool {
	lm := l.v.Load().(*limiter)
	return lm.Add(h)
}
func (l *limiter) Add(h uint64) bool {
	currentItems := atomic.LoadUint64(&l.currentItems)
	if currentItems >= uint64(l.f.maxItems) {
		return l.f.Has(h)
	}
	if l.f.Add(h) {
		atomic.AddUint64(&l.currentItems, 1)
	}
	return true
}

上面的过滤器采用的是布隆过滤器,核心函数为HasAdd,分别用于判断某个元素是否存在于过滤器中,以及将元素添加到布隆过滤器中。

过滤器的初始化函数如下,bitsPerItem是个常量,值为16。bitsCount统计了过滤器中的总bit数,每个bit表示某个值的存在性。bits以64bit为单位的(后续称之为slot,目的是为了在bitsCount中快速检索目标bit)。计算bits时加上63的原因是为了四舍五入向上取值,比如当maxItems=1时至少需要1个unit64的slot。

func newFilter(maxItems int) *filter {
	bitsCount := maxItems * bitsPerItem
	bits := make([]uint64, (bitsCount+63)/64)
	return &filter{
		maxItems: maxItems,
		bits:     bits,
	}
}

为什么bitsPerItem为16?这篇文章给出了如何计算布隆过滤器的大小。在本代码中,k为4(hashesCount),期望的漏失率为0.003(可以从官方的filter_test.go中看出),则要求总存储和总元素的比例为15,为了方便检索slot(64bit,为16的倍数),将之设置为16。

	if p > 0.003 {
		t.Fatalf("too big false hits share for maxItems=%d: %.5f, falseHits: %d", maxItems, p, falseHits)
	}

下面是过滤器的Add操作,目的是在过滤器中添加某个元素。Add函数中没有使用多个哈希函数来计算元素的哈希值,转而改变同一个元素的值,然后对相应的值应用相同的哈希函数,元素改变的次数受hashesCount的限制。

  • 获取过滤器的完整存储,并转换为以bit单位
  • 将元素h转换为byte数组,便于xxhash.Sum64计算
  • 后续将执行hashesCount次哈希,降低漏失率
  • 计算元素h的哈希
  • 递增元素h,为下一次哈希做准备
  • 取余法获取元素的bit范围
  • 获取元素所在的slot(即uint64大小的bit范围)
  • 获取元素所在的slot中的bit位,该位为1表示该元素存在,为0表示该元素不存在
  • 获取元素所在bit位的掩码
  • 加载元素所在的slot的数值
  • 如果w & mask结果为0,说明该元素不存在,
  • 将元素所在的slot(w)中的元素所在的bit位(mask)置为1,表示添加了该元素
  • 由于Add函数可以并发访问,因此bits[i]有可能被其他操作修改,因此需要通过重新加载(14)并通过循环来在bits[i]中设置该元素的存在性
func (f *filter) Add(h uint64) bool {
	bits := f.bits
	maxBits := uint64(len(bits)) * 64 //1
	bp := (*[8]byte)(unsafe.Pointer(&h))//2
	b := bp[:]
	isNew := false
	for i := 0; i < hashesCount; i++ {//3
		hi := xxhash.Sum64(b)//4
		h++ //5
		idx := hi % maxBits //6
		i := idx / 64 //7
		j := idx % 64 //8
		mask := uint64(1) << j //9
		w := atomic.LoadUint64(&bits[i])//10
		for (w & mask) == 0 {//11
			wNew := w | mask //12
			if atomic.CompareAndSwapUint64(&bits[i], w, wNew) {//13
				isNew = true//14
				break
			}
			w = atomic.LoadUint64(&bits[i])//14
		}
	}
	return isNew
}

看懂了Add函数,Has就相当简单了,它只是Add函数的缩减版,无需设置bits[i]

func (f *filter) Has(h uint64) bool {
	bits := f.bits
	maxBits := uint64(len(bits)) * 64
	bp := (*[8]byte)(unsafe.Pointer(&h))
	b := bp[:]
	for i := 0; i < hashesCount; i++ {
		hi := xxhash.Sum64(b)
		h++
		idx := hi % maxBits
		i := idx / 64
		j := idx % 64
		mask := uint64(1) << j
		w := atomic.LoadUint64(&bits[i])
		if (w & mask) == 0 {
			return false
		}
	}
	return true
}

总结

由于victoriaMetrics的过滤器采用的是布隆过滤器,因此它的限速并不精准,在源码条件下, 大约有3%的偏差。但同样地,由于采用了布隆过滤器,降低了所需的内存以及相关计算资源。此外victoriaMetrics的过滤器实现了并发访问。

在大流量场景中,如果需要对请求进行相对精准的过滤,可以考虑使用布隆过滤器,降低所需要的资源,但前提是过滤的结果能够忍受一定程度的漏失率。

以上就是victoriaMetrics库布隆过滤器初始化及使用详解的详细内容,更多关于victoriaMetrics库布隆过滤器的资料请关注脚本之家其它相关文章!

相关文章

  • Golang实现Directional Channel(定向通道)

    Golang实现Directional Channel(定向通道)

    这篇文章主要介绍了Golang实现Directional Channel(定向通道),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • Golang flag包的具体使用

    Golang flag包的具体使用

    本文主要介绍了Golang flag包的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Go语言编译时为exe添加图标和属性信息的方法

    Go语言编译时为exe添加图标和属性信息的方法

    在使用Go语言开发应用程序时,有个非常方便的地方就是编译得到的可执行文件可以不依赖任何动态链接库、并且不需要任何运行环境即可运行,本文给大家介绍Go编译时为exe添加图标和属性信息的方法,需要的朋友可以参考下
    2023-09-09
  • 基于go实例网络存储协议详解

    基于go实例网络存储协议详解

    这篇文章主要为大家介绍了基于go实例网络存储协议详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • golang中使用proto3协议导致的空值字段不显示的问题处理方案

    golang中使用proto3协议导致的空值字段不显示的问题处理方案

    这篇文章主要介绍了golang中使用proto3协议导致的空值字段不显示的问题处理方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • Golang通过包长协议处理TCP粘包的问题解决

    Golang通过包长协议处理TCP粘包的问题解决

    本文主要介绍了Golang通过包长协议处理TCP粘包的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-06-06
  • golang中配置 sql.DB获得更好的性能

    golang中配置 sql.DB获得更好的性能

    这篇文章主要介绍了golang中如何配置 sql.DB获得更好的性能,在这篇文章中,我想准确解释这些设置的作用,并展示它们可能产生的(积极和消极)影响,需要的朋友可以参考下
    2023-10-10
  • 使用go操作redis的有序集合(zset)

    使用go操作redis的有序集合(zset)

    这篇文章主要介绍了使用go操作redis的有序集合(zset),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Go语言中DateTime的用法介绍

    Go语言中DateTime的用法介绍

    这篇文章介绍了Go语言中DateTime的用法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • Go语言使用Request,Response处理web页面请求

    Go语言使用Request,Response处理web页面请求

    这篇文章主要介绍了Go语言使用Request,Response处理web页面请求,需要的朋友可以参考下
    2022-04-04

最新评论