springboot 整合hbase的示例代码
一、Springboot整合HBase数据库
1、添加依赖
<!-- Spring Boot HBase 依赖 --> <dependency> <groupId>com.spring4all</groupId> <artifactId>spring-boot-starter-hbase</artifactId> </dependency> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-hadoop-hbase</artifactId> <version>2.5.0.RELEASE</version> </dependency> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-hadoop</artifactId> <version>2.5.0.RELEASE</version> </dependency>
2、添加配置
通过Yaml方式配置
spring: hbase: zookeeper: quorum: hbase1.xxx.org,hbase2.xxx.org,hbase3.xxx.org property: clientPort: 2181 data: hbase: quorum: XXX rootDir: XXX nodeParent: XXX zookeeper: znode: parent: /hbase
3、添加配置类
@Configuration public class HBaseConfig { @Bean public HBaseService getHbaseService() { //设置临时的hadoop环境变量,之后程序会去这个目录下的\bin目录下找winutils.exe工具,windows连接hadoop时会用到 //System.setProperty("hadoop.home.dir", "D:\\Program Files\\Hadoop"); //执行此步时,会去resources目录下找相应的配置文件,例如hbase-site.xml org.apache.hadoop.conf.Configuration conf = HBaseConfiguration.create(); return new HBaseService(conf); } }
4、工具类的方式实现HBASE操作
@Service public class HBaseService { private Admin admin = null; private Connection connection = null; public HBaseService(Configuration conf) { connection = ConnectionFactory.createConnection(conf); admin = connection.getAdmin(); } //创建表 create <table>, {NAME => <column family>, VERSIONS => <VERSIONS>} public boolean creatTable(String tableName, List<String> columnFamily) { //列族column family List<ColumnFamilyDescriptor> cfDesc = new ArrayList<>(columnFamily.size()); columnFamily.forEach(cf -> { cfDesc.add(ColumnFamilyDescriptorBuilder.newBuilder( Bytes.toBytes(cf)).build()); }); //表 table TableDescriptor tableDesc = TableDescriptorBuilder .newBuilder(TableName.valueOf(tableName)) .setColumnFamilies(cfDesc).build(); if (admin.tableExists(TableName.valueOf(tableName))) { log.debug("table Exists!"); } else { admin.createTable(tableDesc); log.debug("create table Success!"); } close(admin, null, null); return true; } public List<String> getAllTableNames() { List<String> result = new ArrayList<>(); TableName[] tableNames = admin.listTableNames(); for (TableName tableName : tableNames) { result.add(tableName.getNameAsString()); } close(admin, null, null); return result; } public Map<String, Map<String, String>> getResultScanner(String tableName) { Scan scan = new Scan(); return this.queryData(tableName, scan); } private Map<String, Map<String, String>> queryData(String tableName, Scan scan) { // <rowKey,对应的行数据> Map<String, Map<String, String>> result = new HashMap<>(); ResultScanner rs = null; //获取表 Table table = null; table = getTable(tableName); rs = table.getScanner(scan); for (Result r : rs) { // 每一行数据 Map<String, String> columnMap = new HashMap<>(); String rowKey = null; // 行键,列族和列限定符一起确定一个单元(Cell) for (Cell cell : r.listCells()) { if (rowKey == null) { rowKey = Bytes.toString(cell.getRowArray(), cell.getRowOffset(), cell.getRowLength()); } columnMap.put( //列限定符 Bytes.toString(cell.getQualifierArray(), cell.getQualifierOffset(), cell.getQualifierLength()), //列族 Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength())); } if (rowKey != null) { result.put(rowKey, columnMap); } } close(null, rs, table); return result; } public void putData(String tableName, String rowKey, String familyName, String[] columns, String[] values) { Table table = null; table = getTable(tableName); putData(table, rowKey, tableName, familyName, columns, values); close(null, null, table); } private void putData(Table table, String rowKey, String tableName, String familyName, String[] columns, String[] values) { //设置rowkey Put put = new Put(Bytes.toBytes(rowKey)); if (columns != null && values != null && columns.length == values.length) { for (int i = 0; i < columns.length; i++) { if (columns[i] != null && values[i] != null) { put.addColumn(Bytes.toBytes(familyName), Bytes.toBytes(columns[i]), Bytes.toBytes(values[i])); } else { throw new NullPointerException(MessageFormat.format( "列名和列数据都不能为空,column:{0},value:{1}", columns[i], values[i])); } } } table.put(put); log.debug("putData add or update data Success,rowKey:" + rowKey); table.close(); } private Table getTable(String tableName) throws IOException { return connection.getTable(TableName.valueOf(tableName)); } private void close(Admin admin, ResultScanner rs, Table table) { if (admin != null) { try { admin.close(); } catch (IOException e) { log.error("关闭Admin失败", e); } if (rs != null) { rs.close(); } if (table != null) { rs.close(); } if (table != null) { try { table.close(); } catch (IOException e) { log.error("关闭Table失败", e); } } } } }
测试类
@RunWith(SpringJUnit4ClassRunner.class) @SpringBootTest class HBaseApplicationTests { @Resource private HBaseService hbaseService; //测试创建表 @Test public void testCreateTable() { hbaseService.creatTable("test_base", Arrays.asList("a", "back")); } //测试加入数据 @Test public void testPutData() { hbaseService.putData("test_base", "000001", "a", new String[]{ "project_id", "varName", "coefs", "pvalues", "tvalues", "create_time"}, new String[]{"40866", "mob_3", "0.9416", "0.0000", "12.2293", "null"}); hbaseService.putData("test_base", "000002", "a", new String[]{ "project_id", "varName", "coefs", "pvalues", "tvalues", "create_time"}, new String[]{"40866", "idno_prov", "0.9317", "0.0000", "9.8679", "null"}); hbaseService.putData("test_base", "000003", "a", new String[]{ "project_id", "varName", "coefs", "pvalues", "tvalues", "create_time"}, new String[]{"40866", "education", "0.8984", "0.0000", "25.5649", "null"}); } //测试遍历全表 @Test public void testGetResultScanner() { Map<String, Map<String, String>> result2 = hbaseService.getResultScanner("test_base"); System.out.println("-----遍历查询全表内容-----"); result2.forEach((k, value) -> { System.out.println(k + "--->" + value); }); } }
二、使用spring-data-hadoop-hbase
1、配置类
@Configuration public class HBaseConfiguration { @Value("${hbase.zookeeper.quorum}") private String zookeeperQuorum; @Value("${hbase.zookeeper.property.clientPort}") private String clientPort; @Value("${zookeeper.znode.parent}") private String znodeParent; @Bean public HbaseTemplate hbaseTemplate() { org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration(); conf.set("hbase.zookeeper.quorum", zookeeperQuorum); conf.set("hbase.zookeeper.property.clientPort", clientPort); conf.set("zookeeper.znode.parent", znodeParent); return new HbaseTemplate(conf); } }
2、业务类中使用HbaseTemplate
这个是作为工具类
@Service @Slf4j public class HBaseService { @Autowired private HbaseTemplate hbaseTemplate; //查询列簇 public List<Result> getRowKeyAndColumn(String tableName, String startRowkey, String stopRowkey, String column, String qualifier) { FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL); if (StringUtils.isNotBlank(column)) { log.debug("{}", column); filterList.addFilter(new FamilyFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes(column)))); } if (StringUtils.isNotBlank(qualifier)) { log.debug("{}", qualifier); filterList.addFilter(new QualifierFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes(qualifier)))); } Scan scan = new Scan(); if (filterList.getFilters().size() > 0) { scan.setFilter(filterList); } scan.setStartRow(Bytes.toBytes(startRowkey)); scan.setStopRow(Bytes.toBytes(stopRowkey)); return hbaseTemplate.find(tableName, scan, (rowMapper, rowNum) -> rowMapper); } public List<Result> getListRowkeyData(String tableName, List<String> rowKeys, String familyColumn, String column) { return rowKeys.stream().map(rk -> { if (StringUtils.isNotBlank(familyColumn)) { if (StringUtils.isNotBlank(column)) { return hbaseTemplate.get(tableName, rk, familyColumn, column, (rowMapper, rowNum) -> rowMapper); } else { return hbaseTemplate.get(tableName, rk, familyColumn, (rowMapper, rowNum) -> rowMapper); } } return hbaseTemplate.get(tableName, rk, (rowMapper, rowNum) -> rowMapper); }).collect(Collectors.toList()); } }
三、使用spring-boot-starter-data-hbase
## 下载spring-boot-starter-hbase代码 git clone https://github.com/SpringForAll/spring-boot-starter-hbase.git ## 安装 cd spring-boot-starter-hbase mvn clean install
1、添加配置项
- spring.data.hbase.quorum 指定 HBase 的 zk 地址
- spring.data.hbase.rootDir 指定 HBase 在 HDFS 上存储的路径
- spring.data.hbase.nodeParent 指定 ZK 中 HBase 的根 ZNode
2、定义好DTO
@Data public class City { private Long id; private Integer age; private String cityName; }
3、创建对应rowMapper
public class CityRowMapper implements RowMapper<City> { private static byte[] COLUMN_FAMILY = "f".getBytes(); private static byte[] NAME = "name".getBytes(); private static byte[] AGE = "age".getBytes(); @Override public City mapRow(Result result, int rowNum) throws Exception { String name = Bytes.toString(result.getValue(COLUMN_FAMILY, NAME)); int age = Bytes.toInt(result.getValue(COLUMN_FAMILY, AGE)); City dto = new City(); dto.setCityName(name); dto.setAge(age); return dto; } }
4、操作实现增改查
- HbaseTemplate.find 返回 HBase 映射的 City 列表
- HbaseTemplate.get 返回 row 对应的 City 信息
- HbaseTemplate.saveOrUpdates 保存或者更新
如果 HbaseTemplate 操作不满足需求,完全可以使用 hbaseTemplate 的getConnection() 方法,获取连接。进而类似 HbaseTemplate 实现的逻辑,实现更复杂的需求查询等功能
@Service public class CityServiceImpl implements CityService { @Autowired private HbaseTemplate hbaseTemplate; //查询 public List<City> query(String startRow, String stopRow) { Scan scan = new Scan(Bytes.toBytes(startRow), Bytes.toBytes(stopRow)); scan.setCaching(5000); List<City> dtos = this.hbaseTemplate.find("people_table", scan, new CityRowMapper()); return dtos; } //查询 public City query(String row) { City dto = this.hbaseTemplate.get("people_table", row, new CityRowMapper()); return dto; } //新增或者更新 public void saveOrUpdate() { List<Mutation> saveOrUpdates = new ArrayList<Mutation>(); Put put = new Put(Bytes.toBytes("135xxxxxx")); put.addColumn(Bytes.toBytes("people"), Bytes.toBytes("name"), Bytes.toBytes("test")); saveOrUpdates.add(put); this.hbaseTemplate.saveOrUpdates("people_table", saveOrUpdates); } }
四、Springboot整合Influxdb
中文文档:https://jasper-zhang1.gitbooks.io/influxdb/content/Introduction/installation.html
注意,项目建立在spring-boot-web基础上
1、添加依赖
<dependency> <groupId>org.influxdb</groupId> <artifactId>influxdb-java</artifactId> <version>2.15</version> </dependency>
2、添加配置
spring: influx: database: my_sensor1 password: admin url: http://127.0.0.1:6086 user: admin
3、编写配置类
@Configuration public class InfluxdbConfig { @Value("${spring.influx.url}") private String influxDBUrl; @Value("${spring.influx.user}") private String userName; @Value("${spring.influx.password}") private String password; @Value("${spring.influx.database}") private String database; @Bean("influxDB") public InfluxDB influxdb(){ InfluxDB influxDB = InfluxDBFactory.connect(influxDBUrl, userName, password); try { /** * 异步插入: * enableBatch这里第一个是point的个数,第二个是时间,单位毫秒 * point的个数和时间是联合使用的,如果满100条或者60 * 1000毫秒 * 满足任何一个条件就会发送一次写的请求。 */ influxDB.setDatabase(database).enableBatch(100,1000 * 60, TimeUnit.MILLISECONDS); } catch (Exception e) { e.printStackTrace(); } finally { //设置默认策略 influxDB.setRetentionPolicy("sensor_retention"); } //设置日志输出级别 influxDB.setLogLevel(InfluxDB.LogLevel.BASIC); return influxDB; } }
4、InfluxDB原生API实现
@SpringBootTest(classes = {MainApplication.class}) @RunWith(SpringJUnit4ClassRunner.class) public class InfluxdbDBTest { @Autowired private InfluxDB influxDB; //measurement private final String measurement = "sensor"; @Value("${spring.influx.database}") private String database; /** * 批量插入第一种方式 */ @Test public void insert(){ List<String> lines = new ArrayList<String>(); Point point = null; for(int i=0;i<50;i++){ point = Point.measurement(measurement) .tag("deviceId", "sensor" + i) .addField("temp", 3) .addField("voltage", 145+i) .addField("A1", "4i") .addField("A2", "4i").build(); lines.add(point.lineProtocol()); } //写入 influxDB.write(lines); } /** * 批量插入第二种方式 */ @Test public void batchInsert(){ BatchPoints batchPoints = BatchPoints .database(database) .consistency(InfluxDB.ConsistencyLevel.ALL) .build(); //遍历sqlserver获取数据 for(int i=0;i<50;i++){ //创建单条数据对象——表名 Point point = Point.measurement(measurement) //tag属性——只能存储String类型 .tag("deviceId", "sensor" + i) .addField("temp", 3) .addField("voltage", 145+i) .addField("A1", "4i") .addField("A2", "4i").build(); //将单条数据存储到集合中 batchPoints.point(point); } //批量插入 influxDB.write(batchPoints); } /** * 获取数据 */ @Test public void datas(@RequestParam Integer page){ int pageSize = 10; // InfluxDB支持分页查询,因此可以设置分页查询条件 String pageQuery = " LIMIT " + pageSize + " OFFSET " + (page - 1) * pageSize; String queryCondition = ""; //查询条件暂且为空 // 此处查询所有内容,如果 String queryCmd = "SELECT * FROM " // 查询指定设备下的日志信息 // 要指定从 RetentionPolicyName.measurement中查询指定数据,默认的策略可以不加; // + 策略name + "." + measurement + measurement // 添加查询条件(注意查询条件选择tag值,选择field数值会严重拖慢查询速度) + queryCondition // 查询结果需要按照时间排序 + " ORDER BY time DESC" // 添加分页查询条件 + pageQuery; QueryResult queryResult = influxDB.query(new Query(queryCmd, database)); System.out.println("query result => "+queryResult); } }
5、采用封装工具类
1、创建实体类
@Data @Measurement(name = "sensor") public class Sensor { @Column(name="deviceId",tag=true) private String deviceId; @Column(name="temp") private float temp; @Column(name="voltage") private float voltage; @Column(name="A1") private float A1; @Column(name="A2") private float A2; @Column(name="time") private String time; }
2、创建工具类
@Component public class InfluxdbUtils { @Autowired private InfluxDB influxDB; @Value("${spring.influx.database}") private String database; /** * 新增单条记录,利用java的反射机制进行新增操作 */ @SneakyThrows public void insertOne(Object obj){ //获取度量 Class<?> clasz = obj.getClass(); Measurement measurement = clasz.getAnnotation(Measurement.class); //构建 Point.Builder builder = Point.measurement(measurement.name()); // 获取对象属性 Field[] fieldArray = clasz.getDeclaredFields(); Column column = null; for(Field field : fieldArray){ column = field.getAnnotation(Column.class); //设置属性可操作 field.setAccessible(true); if(column.tag()){ //tag属性只能存储String类型 builder.tag(column.name(), field.get(obj).toString()); }else{ //设置field if(field.get(obj) != null){ builder.addField(column.name(), field.get(obj).toString()); } } } influxDB.write(builder.build()); } /** * 批量新增,方法一 */ @SneakyThrows public void insertBatchByRecords(List<?> records){ List<String> lines = new ArrayList<String>(); records.forEach(record->{ Class<?> clasz = record.getClass(); //获取度量 Measurement measurement = clasz.getAnnotation(Measurement.class); //构建 Point.Builder builder = Point.measurement(measurement.name()); Field[] fieldArray = clasz.getDeclaredFields(); Column column = null; for(Field field : fieldArray){ column = field.getAnnotation(Column.class); //设置属性可操作 field.setAccessible(true); if(column.tag()){ //tag属性只能存储String类型 builder.tag(column.name(), field.get(record).toString()); }else{ //设置field if(field.get(record) != null){ builder.addField(column.name(), field.get(record).toString()); } } } lines.add(builder.build().lineProtocol()); }); influxDB.write(lines); } /** * 批量新增,方法二 */ @SneakyThrows public void insertBatchByPoints(List<?> records){ BatchPoints batchPoints = BatchPoints.database(database) .consistency(InfluxDB.ConsistencyLevel.ALL) .build(); records.forEach(record->{ Class<?> clasz = record.getClass(); //获取度量 Measurement measurement = clasz.getAnnotation(Measurement.class); //构建 Point.Builder builder = Point.measurement(measurement.name()); Field[] fieldArray = clasz.getDeclaredFields(); Column column = null; for(Field field : fieldArray){ column = field.getAnnotation(Column.class); //设置属性可操作 field.setAccessible(true); if(column.tag()){ //tag属性只能存储String类型 builder.tag(column.name(), field.get(record).toString()); }else{ //设置field if(field.get(record) != null){ builder.addField(column.name(), field.get(record).toString()); } } } batchPoints.point(builder.build()); }); influxDB.write(batchPoints); } /** * 查询,返回Map集合 * @param query 完整的查询语句 */ public List<Object> fetchRecords(String query){ List<Object> results = new ArrayList<Object>(); QueryResult queryResult = influxDB.query(new Query(query, database)); queryResult.getResults().forEach(result->{ result.getSeries().forEach(serial->{ List<String> columns = serial.getColumns(); int fieldSize = columns.size(); serial.getValues().forEach(value->{ Map<String,Object> obj = new HashMap<String,Object>(); for(int i=0;i<fieldSize;i++){ obj.put(columns.get(i), value.get(i)); } results.add(obj); }); }); }); return results; } /** * 查询,返回map集合 * @param fieldKeys 查询的字段,不可为空;不可为单独的tag * @param measurement 度量,不可为空; */ public List<Object> fetchRecords(String fieldKeys, String measurement){ StringBuilder query = new StringBuilder(); query.append("select ").append(fieldKeys).append(" from ").append(measurement); return this.fetchRecords(query.toString()); } /** * 查询,返回map集合 * @param fieldKeys 查询的字段,不可为空;不可为单独的tag * @param measurement 度量,不可为空; */ public List<Object> fetchRecords(String fieldKeys, String measurement, String order){ StringBuilder query = new StringBuilder(); query.append("select ").append(fieldKeys).append(" from ").append(measurement); query.append(" order by ").append(order); return this.fetchRecords(query.toString()); } /** * 查询,返回map集合 * @param fieldKeys 查询的字段,不可为空;不可为单独的tag * @param measurement 度量,不可为空; */ public List<Object> fetchRecords(String fieldKeys, String measurement, String order, String limit){ StringBuilder query = new StringBuilder(); query.append("select ").append(fieldKeys).append(" from ").append(measurement); query.append(" order by ").append(order); query.append(limit); return this.fetchRecords(query.toString()); } /** * 查询,返回对象的list集合 */ @SneakyThrows public <T> List<T> fetchResults(String query, Class<?> clasz){ List results = new ArrayList<>(); QueryResult queryResult = influxDB.query(new Query(query, database)); queryResult.getResults().forEach(result->{ result.getSeries().forEach(serial->{ List<String> columns = serial.getColumns(); int fieldSize = columns.size(); serial.getValues().forEach(value->{ Object obj = null; obj = clasz.newInstance(); for(int i=0;i<fieldSize;i++){ String fieldName = columns.get(i); Field field = clasz.getDeclaredField(fieldName); field.setAccessible(true); Class<?> type = field.getType(); if(type == float.class){ field.set(obj, Float.valueOf(value.get(i).toString())); }else{ field.set(obj, value.get(i)); } } results.add(obj); }); }); }); return results; } /** * 查询,返回对象的list集合 */ public <T> List<T> fetchResults(String fieldKeys, String measurement, Class<?> clasz){ StringBuilder query = new StringBuilder(); query.append("select ").append(fieldKeys).append(" from ").append(measurement); return this.fetchResults(query.toString(), clasz); } /** * 查询,返回对象的list集合 */ public <T> List<T> fetchResults(String fieldKeys, String measurement, String order, Class<?> clasz){ StringBuilder query = new StringBuilder(); query.append("select ").append(fieldKeys).append(" from ").append(measurement); query.append(" order by ").append(order); return this.fetchResults(query.toString(), clasz); } /** * 查询,返回对象的list集合 */ public <T> List<T> fetchResults(String fieldKeys, String measurement, String order, String limit, Class<?> clasz){ StringBuilder query = new StringBuilder(); query.append("select ").append(fieldKeys).append(" from ").append(measurement); query.append(" order by ").append(order); query.append(limit); return this.fetchResults(query.toString(), clasz); } }
3、使用工具类的测试代码
@SpringBootTest(classes = {MainApplication.class}) @RunWith(SpringJUnit4ClassRunner.class) public class InfluxdbUtilTest { @Autowired private InfluxdbUtils influxdbUtils; /** * 插入单条记录 */ @Test public void insert(){ Sensor sensor = new Sensor(); sensor.setA1(10); sensor.setA2(10); sensor.setDeviceId("0002"); sensor.setTemp(10L); sensor.setTime("2021-01-19"); sensor.setVoltage(10); influxdbUtils.insertOne(sensor); } /** * 批量插入第一种方式 */ @GetMapping("/index22") public void batchInsert(){ List<Sensor> sensorList = new ArrayList<Sensor>(); for(int i=0; i<50; i++){ Sensor sensor = new Sensor(); sensor.setA1(2); sensor.setA2(12); sensor.setTemp(9); sensor.setVoltage(12); sensor.setDeviceId("sensor4545-"+i); sensorList.add(sensor); } influxdbUtils.insertBatchByRecords(sensorList); } /** * 批量插入第二种方式 */ @GetMapping("/index23") public void batchInsert1(){ List<Sensor> sensorList = new ArrayList<Sensor>(); Sensor sensor = null; for(int i=0; i<50; i++){ sensor = new Sensor(); sensor.setA1(2); sensor.setA2(12); sensor.setTemp(9); sensor.setVoltage(12); sensor.setDeviceId("sensor4545-"+i); sensorList.add(sensor); } influxdbUtils.insertBatchByPoints(sensorList); } /** * 查询数据 */ @GetMapping("/datas2") public void datas(@RequestParam Integer page){ int pageSize = 10; // InfluxDB支持分页查询,因此可以设置分页查询条件 String pageQuery = " LIMIT " + pageSize + " OFFSET " + (page - 1) * pageSize; String queryCondition = ""; //查询条件暂且为空 // 此处查询所有内容,如果 String queryCmd = "SELECT * FROM sensor" // 查询指定设备下的日志信息 // 要指定从 RetentionPolicyName.measurement中查询指定数据,默认的策略可以不加; // + 策略name + "." + measurement // 添加查询条件(注意查询条件选择tag值,选择field数值会严重拖慢查询速度) + queryCondition // 查询结果需要按照时间排序 + " ORDER BY time DESC" // 添加分页查询条件 + pageQuery; List<Object> sensorList = influxdbUtils.fetchRecords(queryCmd); System.out.println("query result => {}"+sensorList ); } /** * 获取数据 */ @GetMapping("/datas21") public void datas1(@RequestParam Integer page){ int pageSize = 10; // InfluxDB支持分页查询,因此可以设置分页查询条件 String pageQuery = " LIMIT " + pageSize + " OFFSET " + (page - 1) * pageSize; String queryCondition = ""; //查询条件暂且为空 // 此处查询所有内容,如果 String queryCmd = "SELECT * FROM sensor" // 查询指定设备下的日志信息 // 要指定从 RetentionPolicyName.measurement中查询指定数据,默认的策略可以不加; // + 策略name + "." + measurement // 添加查询条件(注意查询条件选择tag值,选择field数值会严重拖慢查询速度) + queryCondition // 查询结果需要按照时间排序 + " ORDER BY time DESC" // 添加分页查询条件 + pageQuery; List<Sensor> sensorList = influxdbUtils.fetchResults(queryCmd, Sensor.class); //List<Sensor> sensorList = influxdbUtils.fetchResults("*", "sensor", Sensor.class); sensorList.forEach(sensor->{ System.out.println("query result => {}"+sensorList ); }); } }
6、采用封装数据模型的方式
1、在Influxdb库中创建存储策略
CREATE RETENTION POLICY "rp_order_payment" ON "db_order" DURATION 30d REPLICATION 1 DEFAULT
2、创建数据模型
@Data @Measurement(name = "m_order_payment", database = "db_order", retentionPolicy = "rp_order_payment") public class OrderPayment implements Serializable { // 统计批次 @Column(name = "batch_id", tag = true) private String batchId; // 哪个BU @Column(name = "bu_id", tag = true) private String buId; // BU 名称 @Column(name = "bu_name") private String buName; // 总数 @Column(name = "total_count", tag = true) private String totalCount; // 支付量 @Column(name = "pay_count", tag = true) private String payCount; // 金额 @Column(name = "total_money", tag = true) private String totalMoney; }
3、创建Mapper
public class InfluxMapper extends InfluxDBMapper { public InfluxMapper(InfluxDB influxDB) { super(influxDB); } }
4、配置Mapper
@Log4j2 @Configuration public class InfluxAutoConfiguration { @Bean public InfluxMapper influxMapper(InfluxDB influxDB) { InfluxMapper influxMapper = new InfluxMapper(influxDB); return influxMapper; } }
5、测试CRUD
@SpringBootTest(classes = {MainApplication.class}) @RunWith(SpringJUnit4ClassRunner.class) public class InfluxdbMapperTest { @Autowired private InfluxMapper influxMapper; @Test public void save(OrderPayment product) { influxMapper.save(product); } @Test public void queryAll() { List<OrderPayment> products = influxMapper.query(OrderPayment.class); System.out.println(products); } @Test public void queryByBu(String bu) { String sql = String.format("%s'%s'", "select * from m_order_payment where bu_id = ", bu); Query query = new Query(sql, "db_order"); List<OrderPayment> products = influxMapper.query(query, OrderPayment.class); System.out.println(products); } }
参考:https://blog.csdn.net/cpongo1/article/details/89550486
https://github.com/SpringForAll/spring-boot-starter-hbase
https://github.com/JeffLi1993/springboot-learning-example
到此这篇关于springboot 整合hbase的示例代码的文章就介绍到这了,更多相关springboot 整合hbase内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
springmvc使用REST出现:Request method 'PUT' not sup
这篇文章主要介绍了springmvc使用REST出现:Request method 'PUT' not supported问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2022-02-02浅谈利用Spring的AbstractRoutingDataSource解决多数据源的问题
本篇文章主要介绍了浅谈利用Spring的AbstractRoutingDataSource解决多数据源的问题,具有一定的参考价值,有需要的可以了解一下2017-08-08
最新评论