matplotlib绘制雷达图的基本配置(万能模板案例)

 更新时间:2022年04月13日 10:31:02   作者:王小王-123  
本文主要介绍了matplotlib绘制雷达图的基本配置(万能模板案例),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

介绍

雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法。轴的相对位置和角度通常是无信息的。 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图。它相当于平行坐标图,轴径向排列。

应用场景

用于成绩的透视,比如查看你是否偏科,知晓你的兴趣偏向于哪一方面

案例一(成绩雷达图重叠)

# coding=utf-8
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']     #显示中文
plt.rcParams['axes.unicode_minus']=False       #正常显示负号
 
results = [
    {"大学英语": 87, "高等数学": 79, "体育": 95, "计算机基础": 92, "程序设计": 85},
    {"大学英语": 80, "高等数学": 90, "体育": 91, "计算机基础": 85, "程序设计": 88}
]
data_length = len(results[0])
# 将极坐标根据数据长度进行等分
angles = np.linspace(0, 2*np.pi, data_length, endpoint=False)
labels = [key for key in results[0].keys()]
score = [[v for v in result.values()] for result in results]
# 使雷达图数据封闭
score_a = np.concatenate((score[0], [score[0][0]]))
score_b = np.concatenate((score[1], [score[1][0]]))
angles = np.concatenate((angles, [angles[0]]))
labels = np.concatenate((labels, [labels[0]]))
# 设置图形的大小
fig = plt.figure(figsize=(8, 6), dpi=100)
# 新建一个子图
ax = plt.subplot(111, polar=True)
# 绘制雷达图
ax.plot(angles, score_a, color='g')
ax.plot(angles, score_b, color='b')
# 设置雷达图中每一项的标签显示
ax.set_thetagrids(angles*180/np.pi, labels)
# 设置雷达图的0度起始位置
ax.set_theta_zero_location('N')  # E W S N SW SE NW NE
# 设置雷达图的坐标刻度范围
ax.set_rlim(0, 100)
# 设置雷达图的坐标值显示角度,相对于                                                                                                                                                                                                                                                                                                                                                                                            y               起始角度的偏移量
ax.set_rlabel_position(270)
ax.set_title("成绩对比")
plt.legend(["张三", "李四"], loc='best')
plt.show()

案例二(成绩雷达图左右图)

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']     #显示中文
plt.rcParams['axes.unicode_minus']=False       #正常显示负号
 
results = [{"大学英语": 87, "高等数学": 79, "体育": 95, "计算机基础": 92, "程序设计": 85},
   {"大学英语": 80, "高等数学": 90, "体育": 91, "计算机基础": 85, "程序设计": 88}]
data_length = len(results[0])
angles = np.linspace(0, 2*np.pi, data_length, endpoint=False)
labels = [key for key in results[0].keys()]
score = [[v for v in result.values()] for result in results]
score_a = np.concatenate((score[0], [score[0][0]]))  # 将每个数组的第一个元素添加到末尾,首尾相连
score_b = np.concatenate((score[1], [score[1][0]]))  # 将每个数组的第一个元素添加到末尾,首尾相连
angles = np.concatenate((angles, [angles[0]]))
labels = np.concatenate((labels, [labels[0]]))
fig = plt.figure(figsize=(10, 6), dpi=100)
fig.suptitle("成绩对比")
ax1 = plt.subplot(121, polar=True)
ax2 = plt.subplot(122, polar=True)
ax, data, name = [ax1, ax2], [score_a, score_b], ["张三", "李四"]
for i in range(2):  # 0:左图 张三,1:右图 李四
    for j in np.arange(0, 100+20, 20):
        ax[i].plot(angles, 6*[j], '-.', lw=0.5, color='#123456')  # 画五边形框,lw=linewidth
    for j in range(5):
        ax[i].plot([angles[j], angles[j]], [0, 100], ':', lw=0.7, color='green')  # 画5条半径线,每个角度连接圆心0和顶点100
        ax[i].plot(angles, data[i], color='b')   # 在极坐标下画成绩折线图
        ax[i].fill(angles, data[i],color='#B34543',alpha=0.1)
        ax[i].spines['polar'].set_visible(False)  # 隐藏最外圈的圆
         # 隐藏圆形网格线
        ax[i].grid(False)
    for a, b in zip(angles, data[i]):
        ax[i].text(a, b+5, '%.00f' % b, ha='center', va='center', fontsize=12, color='b')
        ax[i].set_thetagrids(angles*180/np.pi, labels)
        ax[i].set_theta_zero_location('N')
        ax[i].set_rlim(0, 100)
        ax[i].set_rlabel_position(0)
        ax[i].set_title(name[i])
plt.show()

极坐标

import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(10,5))  # 设置画布
 
ax1 = plt.subplot(121, projection='polar')  # 左图: projection='polar' 表示极坐标系
ax2 = plt.subplot(122)                      # 右图: 默认是直角坐标系
 
x = np.linspace(0,2*np.pi,9)   # 0 - 2Π 平均划分成9个点 [0,1/4,1/2,3/4,1,5/4/,3/2,7/4,2]  0pi = 2pi
y = np.random.random(9)*10        # 随机9个值
y[-1] = y[0]                      # 首位相连
 
ax1.plot(x,y,marker='.')    # 画左图(ax1)  极坐标 (x表示角度,y表示半径)
ax2.plot(x,y,marker='.')    # 画右图(ax2)直角坐标 (x表示横轴,y表示纵轴)
 
ax1.fill(x,y,alpha=0.3)
ax2.fill(x,y,alpha=0.3)
 
plt.show()

 到此这篇关于matplotlib绘制雷达图的基本配置(万能模板案例)的文章就介绍到这了,更多相关matplotlib 雷达图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python批量将PDF文件转换成图片的实现代码

    python批量将PDF文件转换成图片的实现代码

    这篇文章使用python编写了一个小脚本,目的是为了实现批量将PDF文件转换成图片,文中有详细的实现代码,对我们的学习或工作有一定的帮助,感兴趣的小伙伴可以参考阅读一下
    2023-08-08
  • Python入门教程(三十四)Python的文件处理

    Python入门教程(三十四)Python的文件处理

    这篇文章主要介绍了Python入门教程(三十四)Python的文件处理,在Python中处理文件的主要是open()函数,接下来我们就来一起看看open()函数的用法吧,需要的朋友可以参考下
    2023-05-05
  • 跟老齐学Python之传说中的函数编写条规

    跟老齐学Python之传说中的函数编写条规

    在使用函数的时候,首先要把它放在对象的层面考量,它不是什么特殊的东西,尽管我们使用了不少篇幅讲述它,但它终归还是一个对象。
    2014-10-10
  • python随机取list中的元素方法

    python随机取list中的元素方法

    下面小编就为大家分享一篇python随机取list中的元素方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • pycharm如何实现跨目录调用文件

    pycharm如何实现跨目录调用文件

    这篇文章主要介绍了pycharm如何实现跨目录调用文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • pytorch实现CNN卷积神经网络

    pytorch实现CNN卷积神经网络

    这篇文章主要为大家详细介绍了pytorch实现CNN卷积神经网络,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-02-02
  • 如何使用repr调试python程序

    如何使用repr调试python程序

    这篇文章主要介绍了如何使用repr调试python程序,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Django把SQLite数据库转换为Mysql数据库的过程

    Django把SQLite数据库转换为Mysql数据库的过程

    之前我们默认使用的是SQLite数据库,我们开发完成之后,里面有许多数据,如果我们想转换成Mysql数据库,那我们先得把旧数据从SQLite导出,然后再导入到新的Mysql数据库里去,这篇文章主要介绍了Django如何把SQLite数据库转换为Mysql数据库,需要的朋友可以参考下
    2023-05-05
  • Python动态赋值的陷阱知识点总结

    Python动态赋值的陷阱知识点总结

    在本文中我们给大家整理了关于Python动态赋值的陷阱的相关知识点内容,需要的朋友们学习下。
    2019-03-03
  • Python第三方库安装缓慢的解决方法

    Python第三方库安装缓慢的解决方法

    这篇文章主要给大家介绍了关于Python第三方库安装缓慢的解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02

最新评论