一文带你搞懂Numpy中的深拷贝和浅拷贝

 更新时间:2022年04月14日 10:21:26   作者:赵卓不凡  
深拷贝和浅拷贝是Python中重要的概念,本文将重点介绍在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理,快跟随小编一起来学习一下吧

1. 引言

深拷贝和浅拷贝是Python中重要的概念,本文重点介绍在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理。

闲话少说,我们直接开始吧!

2. 浅拷贝

2.1 问题引入

我们来举个栗子,如下所示我们有两个数组a和b,样例代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a

print('a =', a)
print('b =', b)

输出如下:

a = [1 2 3]
b = [1 2 3]

此时如果我们对数组a做如下改变,代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a

a [0] = 42

print('a =', a)
print('b =', b)

那么我们的问题为: 此时b的值应该为多少?

运行上述代码后,我们得到输出如下:

a = [42 2 3]
b = [42 2 3]

2.2 问题剖析

也许有人会觉得输出应该为a=[42 2 3] 和 b=[1 2 3] ,但是运行上述代码后我们发现a和b的值均发生了相应的改变。这主要是由于在Numpy中对变量的赋值操作,实际上发生的为浅拷贝。

换句话说,此时两个变量指向同一块内存地址,如下所示:

所以,此时如果我们修改数组original_array中的某个元素,copy_array 由于和original_array公用同一块内存,所以其中的元素也会发生相应的变化。

3. 深拷贝

3.1 举个栗子

如果我们想要对Numpy数组执行深拷贝,此时我们可以使用函数copy()。相关的样例代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a.copy()

print('a =', a)
print('b =', b)

输出如下:

a = [1 2 3]
b = [1 2 3]

此时,如果我们改变数组a中的元素,代码如下:

import numpy as np

a = np.array([1, 2, 3])
b = a.copy()

a [0] = 42

print('a =', a)
print('b =', b)

此时的代码输出如下:

a = [42 2 3]
b = [1 2 3]

3.2 探究原因

观察上述输出,我们可以清楚地看到数组a发生了改变而数组b没有发生变化,这是由于我们使用了深拷贝。此时的内存地址如下:

由于 original_array和copy_array指向不同的内存地址空间,所以此时我们对original_array的改变并不会对copy_array带来影响。

4. 技巧总结

经过上述对深拷贝和浅拷贝的举例和示例,相信大家都已有了清晰的认识,接着我们对上述知识点进行总结,归纳如下:

4.1 判断是否指向同一内存

如果我们需要知道两个变量是否指向同一块内存地址,我们可以方便地使用is操作。

浅拷贝示例:

a = np.array([1, 2, 3])
b = a
print(b is a)

输出如下:

True

深拷贝示例:

a = np.array([1, 2, 3])
b = a.copy()
print(b is a)

输出如下:

False

4.2 其他数据类型

尽管本文中所有的示例都使用了NumPy数组,但本文中所涉及的知识也适用于Python中的列表和字典等其他数据类型。

总之,我们需要时刻记载心中:在浅拷贝中,原始数组和新的数组共同执行同一块内存;同时在深拷贝中,新的数组是原始数据的单独的拷贝,它指向一块新的内存地址。

5. 总结

本文重点介绍了Python中对Numpy数组操作的浅拷贝和深拷贝的概念和背后的原理,同时给出了相应的代码示例。

到此这篇关于一文带你搞懂Numpy中的深拷贝和浅拷贝的文章就介绍到这了,更多相关Numpy深拷贝 浅拷贝内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python自动化神器pyautogui使用步骤

    python自动化神器pyautogui使用步骤

    这篇文章主要给大家介绍了关于python自动化神器pyautogui使用步骤的相关资料,在Python当中不仅代码简单,而且有着非常丰富的模块,pyautogui就可以称之为自动化操作的"神器",需要的朋友可以参考下
    2023-07-07
  • Python使用requests模块发送http请求的方法介绍

    Python使用requests模块发送http请求的方法介绍

    Python Requests是一个 HTTP 库,它允许我们向 Web 服务器发送  HTTP 请求,并获取响应结果,本文将会详细介绍Python requests模块如何发送http请求,文中有相关的代码示例,需要的朋友可以参考下
    2023-06-06
  • python两个_多个字典合并相加的实例代码

    python两个_多个字典合并相加的实例代码

    这篇文章主要介绍了python两个_多个字典合并相加,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • 基于python图书馆管理系统设计实例详解

    基于python图书馆管理系统设计实例详解

    这篇文章主要介绍了基于python图书馆管理系统设计实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • python在windows命令行下输出彩色文字的方法

    python在windows命令行下输出彩色文字的方法

    这篇文章主要介绍了python在windows命令行下输出彩色文字的方法,涉及Python文字特效操作技巧,需要的朋友可以参考下
    2015-03-03
  • Python urlopen()和urlretrieve()用法解析

    Python urlopen()和urlretrieve()用法解析

    这篇文章主要介绍了Python urlopen()和urlretrieve()用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • OpenCV读取与写入图片的实现

    OpenCV读取与写入图片的实现

    这篇文章主要介绍了OpenCV读取与写入图片的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • python使用json.dumps输出中文问题

    python使用json.dumps输出中文问题

    这篇文章主要介绍了python使用json.dumps输出中文问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • 利用Tensorflow的队列多线程读取数据方式

    利用Tensorflow的队列多线程读取数据方式

    今天小编就为大家分享一篇利用Tensorflow的队列多线程读取数据方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python中的日期时间处理详解

    Python中的日期时间处理详解

    Python程序能用很多方式处理日期和时间。转换日期格式是一个常见的例行琐事,这篇文章主要介绍了Python中的日期时间处理的几种方式的区别和联系,需要的朋友可以参考下
    2016-11-11

最新评论