基于Python+Matplotlib实现直方图的绘制

 更新时间:2022年04月16日 09:46:24   作者:侯小啾  
Matplotlib是Python的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。本文将为大家介绍如何用matplotlib绘制直方图,感兴趣的朋友可以学习一下

1.关于直方图

直方图 也称 质量分布图,虽然看起来像柱状图,

实际上区别又很大。直方图通常横轴表示数据类型,纵轴表示各数据类型的分布情况。

直方图又可以分为频数分布直方图和频率分布直方图。其绘制方法并无多少差异,只是描述的事件有所不同。频数分布直方图描述的是某事件的数量,而频率分布则描述的是其发生的频率。

而关于频率分布直方图,又可以理解为是“密度图”的一种。频率分布直方图 和 密度图 都可以用来描述事件的概率分布,其中频率分布直方图描述的是离散型随机变量的概率分布,而密度图则描述的是连续型随机变量的概率分布。

2.plt.hist()

绘制直方图通过plt.hist()方法实现,其常用的参数有:

x 数据集

bins ------------- 统计数据的区间分布。可以是一个元素为数值的列表,也可以是一个数值。是一个数值的时候可以配合range参数使用。

range ----------- 元组类型,显示的区间。

当设置区间分布使用数值型的bins和range参数设定时:range确定一个范围,传入形式是一个元组(注意不是range范围对象),左右端点值都可取。数值型的bins表示将该范围分成的份数(等分)。

density --------- 布尔型,显示频率统计结果。默认为None(相当于False),设为False不显示频率统计结果;设为True则显示频率统计结果,即绘制出的图像由频数分布直方图变为频率分布直方图。

histtype -------- 可选参数,即直方图的类型。默认为bar,即绘制出的“柱状”条形。还可以设置为barstacked、step、stepfilled。

align -------------可选参数,控制柱状图的水平分布,设置值为left、mid 或 right,默认值为mid,也推荐使用mid。left和right会产生部分的空白区域。

log --------------- 布尔类型,默认为False,即y轴是否选择指数刻度。

stacked --------- 布尔类型,默认为False,表示是否为堆积柱状图。

edgecolor------- 设定边沿颜色

facecolor-------- 可以用来设定直方图的颜色,也可以简写为color。

orientation-------直方图的方向,默认为竖直方向上的(‘vertical’),设为’horizontal’则表示水平方向上的。

cumulative------默认为False,表示不累积。如果为True则设置累积分度直方图。

3. 绘制一幅简单的 频数 分布直方图

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] ='#cc00ff'
# 设定随机数种子为30
np.random.seed(30)
data = np.random.randint(0, 100, 100)
plt.hist(data, bins=[0, 25, 50, 75, 100], facecolor='#ffff00', edgecolor='#FF0000')
plt.xlabel('X指标')
plt.ylabel('样本个数')
plt.title('X指标频数分布直方图')
plt.show()

4. 绘制一幅 频率 分布直方图

将density设置为True即可·。

此外我们再修改一些细节,将histtype参数设置为stepfilled(梯状且填充)。

并把y轴的标签由“样本个数”改为“样本频率”。

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] ='#cc00ff'
np.random.seed(30)
data = np.random.randint(0, 100, 100)
plt.hist(data, bins=[0, 25, 50, 75, 100], facecolor='#ffff00', edgecolor='#FF0000', density=True, histtype='stepfilled')
plt.xlabel('X指标')
plt.ylabel('样本频率')
plt.title('X指标频数分布直方图')
plt.show()

图像效果如下:

5. 累积分布直方图(水平方向)

增加参数cumulative=True, orientation=‘horizontal’。

此外,因为图像变成了水平方向,所以也需要把x、y轴标签互换并稍作调整。

这里设置区间分布使用数值型的bins和range参数设定,范围为0-100,区间分割为10等份。

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] ='#cc00ff'
np.random.seed(30)
data = np.random.randint(0, 100, 100)
plt.hist(data, bins=10, range=(0, 100), facecolor='#ffff00', edgecolor='#FF0000', density=True, cumulative=True, orientation='horizontal')
plt.xlabel('样本累积频率')
plt.ylabel('X指标')
plt.title('X指标频数分布直方图')
plt.show()

图像效果如下:

到此这篇关于基于Python+Matplotlib实现直方图的绘制的文章就介绍到这了,更多相关Python Matplotlib直方图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用11行Python代码盗取了室友的U盘内容

    使用11行Python代码盗取了室友的U盘内容

    这篇文章主要介绍了使用11行Python代码盗取了室友的U盘内容的相关资料,需要的朋友可以参考下
    2018-10-10
  • numpy.insert()的具体使用方法

    numpy.insert()的具体使用方法

    本文主要介绍了numpy.insert()的具体使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python爬虫利用多线程爬取 LOL 高清壁纸

    Python爬虫利用多线程爬取 LOL 高清壁纸

    这篇文章主要介绍了Python爬虫利用多线程爬取 LOL 高清壁纸,通过网站爬取每一个英雄的所有皮肤图片,全部下载下来并保存到本地,下文爬取过程感兴趣的朋友可以参考一下
    2022-06-06
  • Python依赖管理及打包工具Poetry使用规范

    Python依赖管理及打包工具Poetry使用规范

    这篇文章主要为大家介绍了Python依赖管理及打包工具Poetry的依赖规范,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2021-09-09
  • 使用python-pptx操作PPT的示例详解

    使用python-pptx操作PPT的示例详解

    python对PPT演示文档读写,是通过第三方库python-pptx实现的,python-pptx是用于创建和更新 PowerPoint文件的 Python 库。本文主要介绍了python-pptx操作PPT的相关示例,希望对大家有所帮助
    2023-01-01
  • python如何实现华氏温度和摄氏温度转换

    python如何实现华氏温度和摄氏温度转换

    这篇文章主要介绍了python如何实现华氏温度和摄氏温度转换,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • python持久性管理pickle模块详细介绍

    python持久性管理pickle模块详细介绍

    这篇文章主要介绍了python持久性管理pickle模块详细介绍,本文讲解了什么是持久性、一些经过 pickle 的 Python等内容,并讲给出了18个使用示例,需要的朋友可以参考下
    2015-02-02
  • Python+request+unittest实现接口测试框架集成实例

    Python+request+unittest实现接口测试框架集成实例

    这篇文章主要介绍了Python+request+unittest实现接口测试框架集成实例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-03-03
  • 用Python编写个解释器实现方法接受

    用Python编写个解释器实现方法接受

    计算机只能理解机器码。归根结底,编程语言只是一串文字,目的是为了让人类更容易编写他们想让计算机做的事情。真正的魔法是由编译器和解释器完成,它们弥合了两者之间的差距。解释器逐行读取代码并将其转换为机器码
    2023-01-01
  • 使用mypy对python程序进行静态检查

    使用mypy对python程序进行静态检查

    大家好,本篇文章主要讲的是使用mypy对python程序进行静态检查,感兴趣的同学快来看一看吧,对你有帮助的话记得收藏一下哦
    2021-11-11

最新评论