Python周期任务神器之Schedule模块使用详解

 更新时间:2022年04月19日 11:34:26   作者:Python学习与数据挖掘  
这篇文章主要为大家详细介绍了Python中的周期任务神器—Schedule模块的安装和初级、进阶使用方法,文中的示例代码讲解详细,需要的可以参考一下

如果你想在Linux服务器上周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

1.不方便执行秒级的任务。

2.当需要执行的定时任务有上百个的时候,Crontab的管理就会特别不方便

另外一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

import schedule
import time

def job():
    print("I'm working...")

schedule.every(10).minutes.do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备

请选择以下任一种方式输入命令安装依赖:

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule

2.基本使用

最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

import schedule
import time

def job():
    print("I'm working...")

# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配:

import schedule
import time

def job_that_executes_once():
    # 此处编写的任务只会执行一次...
    return schedule.CancelJob

schedule.every().day.at('22:30').do(job_that_executes_once)

while True:
    schedule.run_pending()
    time.sleep(1)

参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

import schedule

def greet(name):
    print('Hello', name)

# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

获取目前所有的作业

如果你想获取目前所有的作业:

import schedule

def hello():
    print('Hello world')

schedule.every().second.do(hello)

all_jobs = schedule.get_jobs()

取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

import schedule

def greet(name):
    print('Hello {}'.format(name))

schedule.every().second.do(greet)

schedule.clear()

标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

import schedule

def greet(name):
    print('Hello {}'.format(name))

# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')

# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')

# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')

设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

import schedule
from datetime import datetime, timedelta, time

def job():
    print('Boo')

# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)

# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)

# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)

# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)

# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

import schedule

def job_1():
    print('Foo')

def job_2():
    print('Bar')

schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)

schedule.run_all()

# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)

3.高级使用

装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

from schedule import every, repeat, run_pending
import time

# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
    print("I am a scheduled job")

while True:
    run_pending()
    time.sleep(1)

并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

import threading
import time
import schedule

def job1():
    print("I'm running on thread %s" % threading.current_thread())
def job2():
    print("I'm running on thread %s" % threading.current_thread())
def job3():
    print("I'm running on thread %s" % threading.current_thread())

def run_threaded(job_func):
    job_thread = threading.Thread(target=job_func)
    job_thread.start()

schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)

while True:
    schedule.run_pending()
    time.sleep(1)

日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

import schedule
import logging

logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)

def job():
    print("Hello, Logs")

schedule.every().second.do(job)

schedule.run_all()

schedule.clear()

效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

import functools

def catch_exceptions(cancel_on_failure=False):
    def catch_exceptions_decorator(job_func):
        @functools.wraps(job_func)
        def wrapper(*args, **kwargs):
            try:
                return job_func(*args, **kwargs)
            except:
                import traceback
                print(traceback.format_exc())
                if cancel_on_failure:
                    return schedule.CancelJob
        return wrapper
    return catch_exceptions_decorator

@catch_exceptions(cancel_on_failure=True)
def bad_task():
    return 1 / 0

schedule.every(5).minutes.do(bad_task)

这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。

到此这篇关于Python周期任务神器之Schedule模块使用详解的文章就介绍到这了,更多相关Python Schedule模块内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中通过property设置类属性的访问

    Python中通过property设置类属性的访问

    为了达到类似C++类的封装性能,可以使用property来设置Python类属性的访问权限,本文就介绍一下Python中通过property设置类属性的访问,感兴趣的可以了解一下,感兴趣的可以了解一下
    2023-09-09
  • Python使用missingno模块轻松处理数据缺失

    Python使用missingno模块轻松处理数据缺失

    missingno是一个基于Python的开源数据可视化工具,旨在帮助数据分析师和科学家更好地理解和处理数据缺失,下面我们就来看看如何使用missingno处理数据缺失吧
    2024-02-02
  • Python实现最常见加密方式详解

    Python实现最常见加密方式详解

    这篇文章主要介绍了Python实现最常见加密方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python使用post及get方式提交数据的实例

    Python使用post及get方式提交数据的实例

    今天小编就为大家分享一篇关于Python使用post及get方式提交数据的实例,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • Python7个爬虫小案例详解(附源码)中篇

    Python7个爬虫小案例详解(附源码)中篇

    这篇文章主要介绍了Python7个爬虫小案例详解(附源码)中篇,本文章内容详细,通过案例可以更好的理解爬虫的相关知识,七个例子分为了三部分,本次为中篇,共有二道题,需要的朋友可以参考下
    2023-01-01
  • 对django layer弹窗组件的使用详解

    对django layer弹窗组件的使用详解

    今天小编就为大家分享一篇对django layer弹窗组件的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python 文件管理实例详解

    Python 文件管理实例详解

    这篇文章主要介绍了Python 文件管理的方法,以实例形式较为详细的分析了Python针对文件的各种常用函数使用方法与相关注意事项,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-11-11
  • Transformer导论之Bert预训练语言解析

    Transformer导论之Bert预训练语言解析

    这篇文章主要为大家介绍了Transformer导论之Bert预训练语言解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • 安装python依赖包psycopg2来调用postgresql的操作

    安装python依赖包psycopg2来调用postgresql的操作

    这篇文章主要介绍了安装python依赖包psycopg2来调用postgresql的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-01-01
  • Swin Transformer图像处理深度学习模型

    Swin Transformer图像处理深度学习模型

    这篇文章主要为大家介绍了Swin Transformer图像处理深度学习模型详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03

最新评论