C语言数据结构之堆排序的优化算法

 更新时间:2022年04月20日 10:26:50   作者:小白又菜  
堆排序Heap Sort就是利用堆进行排序的方法,下面这篇文章主要给大家介绍了关于C语言数据结构之堆排序的优化算法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

在浏览本篇博文的小伙伴可先浅看一下上篇堆和堆排序的思想:

戳这里可跳转上篇文~~

1.堆排序优化算法

要堆堆排序算法进行优化我们首先要明白之前我们所写的堆排序有什么可以优化的地方或者说哪里写的不够好?

void HeapSort(int* a, int size)
{
	//小堆
	HP hp;
	HeapInit(&hp);
	//O(N*logN)
	for (int i = 0; i < size; ++i)
	{
		HeapPush(&hp, a[i]);
	}
	size_t j = 0;
	//O(N*logN)
	while (!HeapEmpty(&hp))
	{
		a[j] = HeapTop(&hp);
		j++;
		HeapPop(&hp);
	}
	HeapDestory(&hp);
}

这是我们之前写的堆排序,我们能够发现,如果我们要实现堆排序的前提是我们要写一堆。那这想想都很麻烦,我们都知道排序算法那么多,我们何必选择这种算法呢?

其次我们再来分析一下建堆的时间复杂度:

1.1建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的就是近似值,多几个节点不影响最终结果) :

因为我们要进行优化建堆,在这里分析一下向下调整建堆和向上调整建堆的时间复杂度。

1.1.1 向下调整建堆:O(N)

过程分析如下:

因此向下调整建堆的时间复杂度为O(n)。

1.1.2 向上调整建堆:O(N*logN)

过程分析如下:

 因此向上调整建堆的时间复杂度为O(N*logN)。

1.2堆排序的复杂度

1.2.1原堆排序的时间复杂度

我们来看原堆排序的代码中使用了向上调整建堆,因此原排序的时间复杂度为O(N*logN)

1.2.2原堆排序的空间复杂度

因为我们要建立一个堆,我们实现堆是使用数组实现,因此假设有要排序元素个数为N,空间复杂度为O(N)。

1.3堆排序优化算法的复杂度

堆排序的优化算法主要是对空间复杂度进行优化。由于我们之前建堆都要开辟新的数组,因此我们是否可以在原数组上直接建堆,无需再开辟新的空间建堆呢?答案当然是可以的。以下使用的正是在原数组上直接建堆。

1.3.1 堆排序优化算法的时间复杂度

由于使用堆排序,我们要利用堆的特点,每次取堆顶的元素。因此每次取完数据后都要对堆进行调整。再次我们有向上调整和向下调整两种算法,我们需要对这两种算法分别分析选出一个 更优的调整算法。

1.3.1.1向上调整--建堆 O(N*logN)

由于我们是对原数组之间建堆,因此我们如果要是用向上调整,在刚刚我们所分析的建堆的时间复杂度是O(N*logN)。

实现代码:

	向上调整--建堆  O(N*logN)
	int n = 1;
	while (n<size)
	{
		AdjustUp(a, n++);
	}

1.3.1.2向下调整-建堆 O(N)

由于向下调整的前提条件是左子树和右子树都已经是一个堆,但是一个数组并不能保证是一个堆,那么我们不能直接对数组使用向下调整。因此我们需要将节点的左子树右子树变成堆再进行向下调整。因此我们可以我们可以倒着来。

过程:

1、叶子节点不要调,因为一个节点可以看成堆。因此我们从倒数的第一个非叶子节点开始调整。如果找到倒数第一个非叶子节点。那就是用最后一个节点找他的父节点就是最后一个非叶子节点。

parent = (child-1)/2。我们用size计算:child = size -1。因此parent = (size-1-1)/2。我们一直向上找就可以将数组变成一个堆。因此向下调整建堆的复杂度为O(N)。分析如上:

	//向下调整--建堆  O(N)
	for (int i = (size - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, size, i);
	}

1.3.2 堆排序优化算法的空间复杂度

由于我们是在原数组上进行遍历因此没有开辟新的空间。因此空间复杂度为O(1)。

1.4堆排序实现逻辑

如果升序建小堆,最小的数已经在堆顶,剩下的数关系打乱,需要重新建堆,建堆最好也要O(N),再选出次小的,不断建堆选数,如果这样,还不如直接遍历选数!!因此升序要建大堆!!利用删除的思想来玩。

过程:

1、把第一个数和最后一个数交换,由于是大堆,堆顶的数据一定是最大的数据。和最后一个数交换后,最大的数据就到了最后一个。

2、再对前N-1个数进行向下调整建立新的大堆,次大的数放在了堆顶,我们再让堆顶的元素和最后一个元素交换(这个最后一个不是数组的最后一个,是堆中的最后一个,使用end进行控制)。

3、当end到0的时候,说明已经排完了。

	//升序要建大堆,
	size_t end = size - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}

1.5堆排序实现代码

void HeapSort(int* a, int size)
{
	//向下调整--建堆  O(N)
	for (int i = (size - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, size, i);
	}
 
	//如果升序建小堆,最小的数已经在堆顶,剩下的数关系打乱,需要重新建堆,建堆最好也要O(N)
	//再选出次小的,不断建堆选数,如果这样,还不如直接遍历选数!!
 
	//升序要建大堆,
	size_t end = size - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}
 
int main()
{
	int a[] = { 4,2,1,3,5,7,9,8,6};
	HeapSort(a,sizeof(a)/sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		printf("%d ", a[i]);
	}
  
	return 0;
}

1.6演示结果

总结

到此这篇关于C语言数据结构之堆排序优化算法的文章就介绍到这了,更多相关C语言堆排序优化算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C++中MFC Tab Control控件的使用详解

    C++中MFC Tab Control控件的使用详解

    这篇文章主要介绍了C++中MFC Tab Control控件的使用详解的相关资料,需要的朋友可以参考下
    2015-06-06
  • C语言中关于动态内存分配的详解

    C语言中关于动态内存分配的详解

    动态内存是指在堆上分配的内存,而静态内存是指在栈上分配的内存。栈上分配的内存是由系统分配和释放的,空间有限,在复合语句或函数运行结束后就会被系统自动释放而堆上分配的内存则不会有这个问题。
    2021-09-09
  • C语言函数传递数组和传递地址的区别你知道吗

    C语言函数传递数组和传递地址的区别你知道吗

    这篇文章主要介绍了C语言中数组作为函数的参数以及返回值的使用简单入门,这里以一维数组作为基本条件进行例子讲解,需要的朋友可以参考下
    2021-09-09
  • C语言函数指针数组实现计算器功能

    C语言函数指针数组实现计算器功能

    这篇文章主要通过C语言函数指针数组实现了计算器的功能,是一个很好而且流程详细的小例子,感兴趣的新手朋友们可以自己动手也写一遍
    2022-04-04
  • Matlab实现绘制高阶版本韦恩图(upset图)

    Matlab实现绘制高阶版本韦恩图(upset图)

    韦恩图随着阶数升高会越来越复杂,当阶数达到7或者以上时几乎没办法绘制,但是使用upset图却可以比较轻易的绘制。本文就来用Matlab实现绘制upset图,需要的可以参考一下
    2023-01-01
  • Qt向ini文件写入中文出现乱码问题的解决方法详解

    Qt向ini文件写入中文出现乱码问题的解决方法详解

    这篇文章主要为大家详细介绍了当Qt向ini文件写入中文出现乱码问题时的解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-12-12
  • C语言菜鸟基础教程之加法

    C语言菜鸟基础教程之加法

    C语言中运算符和表达式数量之多, 在高级语言中是少见的。正是丰富的运算符和表达式使C语言功能十分完善。 这也是C语言的主要特点之一。今天我们来看看加法运算
    2017-10-10
  • C语言中进程间通讯的方式详解

    C语言中进程间通讯的方式详解

    这篇文章主要为大家详细介绍了C语言中几种进程间通讯的方式,文中的示例代码讲解详细, 对我们学习或工作有一定的借鉴价值,需要的可以参考一下
    2022-08-08
  • windows 使用ffmpeg .a静态库读取Wav音频并保存PCM的方法

    windows 使用ffmpeg .a静态库读取Wav音频并保存PCM的方法

    这篇文章主要介绍了windows 使用ffmpeg .a静态库读取Wav音频并保存PCM,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2024-02-02
  • 基于VS+Opencv2.4.10微信跳一跳辅助工具

    基于VS+Opencv2.4.10微信跳一跳辅助工具

    这篇文章主要为大家详细介绍了基于VS+Opencv2.4.10微信跳一跳辅助工具,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01

最新评论