Pandas进行数据编码的十种方式总结

 更新时间:2022年04月20日 15:35:32   作者:刘早起  
在机器学习中,很多算法都需要我们对分类特征进行转换(编码),即根据某一列的值,新增(修改)一列。本文为大家总结了Pandas中十种数据编码的方式,需要的可以参考一下

大家好,我是早起。

最近在知乎上看到这样一个问题

图片

题主表示pandas用起来很乱,事实真的如此吗?本文就将先如何利用pandas来行数据转换/编码的十种方案,最后再回答这个问题。

其实这个操作在机器学习中十分常见,很多算法都需要我们对分类特征进行转换(编码),即根据某一列的值,新增(修改)一列。

为了方便理解,下面创建示例DataFrame

图片

数值型数据

让我们先来讨论连续型数据的转换,也就是根据Score列的值,来新增一列标签,即如果分数大于90,则标记为A,分数在80-90标记为B,以此类推。

自定义函数 + 循环遍历

首先当然是最简单,最笨的方法,自己写一个函数,并用循环遍历,那肯定就是一个def加一个for

df1 = df.copy()

def myfun(x):
    if x>90:
        return 'A'
    elif x>=80 and x<90:
        return 'B'
    elif x>=70 and x<80:
        return 'C'
    elif x>=60 and x<70:
        return 'D'
    else:
        return 'E'
    
df1['Score_Label'] = None
for i in range(len(df1)):
    df1.iloc[i,3] = myfun(df1.iloc[i,2])

这段代码,相信所有人都能看懂,简单好想但比较麻

图片

有没有更简单的办法呢?pandas当然提供了很多高效的操作的函数,继续往下看。

自定义函数 + map

现在,可以使用map来干掉循环(虽然本质上也是循环)

df2 = df.copy()

def mapfun(x):
    if x>90:
        return 'A'
    elif x>=80 and x<90:
        return 'B'
    elif x>=70 and x<80:
        return 'C'
    elif x>=60 and x<70:
        return 'D'
    else:
        return 'E'

df2['Score_Label'] = df2['Score'].map(mapfun)

结果是同样的

图片

自定义函数 + apply

如果还想简洁代码,可以使用自定义函数 + apply来干掉自定义函数

df3 = df.copy()
df3['Score_Label'] = df3['Score'].apply(lambda x: 'A' if x > 90 else (
    'B' if 90 > x >= 80 else ('C' if 80 > x >= 70 else ('D' if 70 > x >= 60 else 'E'))))

结果和上面是一致的,只不过这么写容易被打。

使用 pd.cut

现在,让我们继续了解更高级的pandas函数,依旧是对 Score 进行编码,使用pd.cut,并指定划分的区间后,可以直接帮你分好组

df4 = df.copy()
bins = [0, 59, 70, 80, 100]
df4['Score_Label'] = pd.cut(df4['Score'], bins)

图片

也可以直接使用labels参数来修改对应组的名称,是不是方便多了

df4['Score_Label_new'] = pd.cut(df4['Score'], bins, labels=[
                                'low', 'middle', 'good', 'perfect'])

图片

使用 sklearn 二值化

既然是和机器学习相关,sklearn肯定跑不掉,如果需要新增一列并判定成绩是否及格,就可以使用Binarizer函数,代码也是简洁好懂

df5 = df.copy()
binerize = Binarizer(threshold = 60)
trans = binerize.fit_transform(np.array(df1['Score']).reshape(-1,1))
df5['Score_Label'] = trans

图片

文本型数据

下面介绍更常见的,对文本数据进行转换打标签。例如新增一列,将性别男、女分别标记为0、1

使用 replace

首先介绍replace,但要注意的是,上面说过的自定义函数相关方法依旧是可行的

df6 = df.copy()
df6['Sex_Label'] = df6['Sex'].replace(['Male','Female'],[0,1])

图片

上面是对性别操作,因为只有男女,所以可以手动指定0、1,但要是类别很多,也可以使用pd.value_counts()来自动指定标签,例如对Course Name列分组

df6 = df.copy()
value = df6['Course Name'].value_counts()
value_map = dict((v, i) for i,v in enumerate(value.index))
df6['Course Name_Label'] = df6.replace({'Course Name':value_map})['Course Name']

图片

使用map

额外强调的是,新增一列,一定要能够想到map

df7 = df.copy()
Map = {elem:index for index,elem in enumerate(set(df["Course Name"]))}
df7['Course Name_Label'] = df7['Course Name'].map(Map)

图片

使用astype

这个方法应该很多人不知道,这就属于上面提到的知乎问题,能实现的方法太多了

df8 = df.copy()
value = df8['Course Name'].astype('category')
df8['Course Name_Label'] = value.cat.codes

图片

使用 sklearn

同数值型一样,这种机器学习中的经典操作,sklearn一定有办法,使用LabelEncoder可以对分类数据进行编码

from sklearn.preprocessing import LabelEncoder
df9 = df.copy()
le = LabelEncoder()
le.fit(df9['Sex'])
df9['Sex_Label'] = le.transform(df9['Sex'])
le.fit(df9['Course Name'])
df9['Course Name_Label'] = le.transform(df9['Course Name'])

图片

一次性转换两列也是可以的

df9 = df.copy()
le = OrdinalEncoder()
le.fit(df9[['Sex','Course Name']])
df9[['Sex_Label','Course Name_Label']] = le.transform(df9[['Sex','Course Name']])

使用factorize

最后,再介绍一个小众但好用的pandas方法,我们需要注意到,在上面的方法中,自动生成的Course Name_Label列,虽然一个数据对应一个语言,因为避免写自定义函数或者字典,这样可以自动生成,所以大多是无序的。

如果我们希望它是有序的,也就是 Python 对应 0Java对应1,除了自己指定,还有什么优雅的办法?这时可以使用factorize,它会根据出现顺序进行编码

df10 = df.copy()
df10['Course Name_Label'] = pd.factorize(df10['Course Name'])[0]

图片

结合匿名函数,我们可以做到对多列进行有序编码转换

df10 = df.copy()
cat_columns = df10.select_dtypes(['object']).columns

df10[['Sex_Label', 'Course Name_Label']] = df10[cat_columns].apply(
    lambda x: pd.factorize(x)[0])

图片

总结

至此,我要介绍的十种pandas数据编码的方法就分享完毕,代码拿走修改变量名就能用

现在回到文章开头的问题,如果你觉得pandas用起来很乱,说明你可能还未对pandas有一个全面且彻底的了解。

其实就像本文介绍数据编码转换一样,确实有很多方法可以实现显得很乱,但学习pandas的正确姿势就是应该把它当成字典来学,不必记住所有方法与细节,你只需知道有这么个函数能完成这样操作,需要用时能想到,想到再来查就行。

以上就是Pandas进行数据编码的十种方式总结的详细内容,更多关于Pandas数据编码的资料请关注脚本之家其它相关文章!

相关文章

  • Python实现录屏功能的示例代码

    Python实现录屏功能的示例代码

    这篇文章主要为大家详细介绍了如何利用Python实现录屏功能,文中的示例代码讲解详细,对我们掌握Python开发有一定的帮助,需要的可以参考一下
    2023-03-03
  • Django 限制访问频率的思路详解

    Django 限制访问频率的思路详解

    这篇文章主要介绍了Django 限制访问频率的思路详解,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • Python socket处理client连接过程解析

    Python socket处理client连接过程解析

    这篇文章主要介绍了Python socket处理client连接过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • 基于Python实现图像文字识别OCR工具

    基于Python实现图像文字识别OCR工具

    在工作、生活中常常会用到,比如票据、漫画、扫描件、照片的文本提取。本文主要介绍了基于PyQt + PaddleOCR实现的一个桌面端的OCR工具,用于快速实现图片中文本区域自动检测+文本自动识别,需要的朋友可以参考一下
    2021-12-12
  • python性能检测工具函数运行内存及运行时间

    python性能检测工具函数运行内存及运行时间

    这篇文章主要介绍了python性能检测工具函数运行内存及运行时间,python虽然是一门慢语言,但是也有着比较多的性能检测工具来帮助我们优化程序的运行效率,下文小编给大家分享五个性能检测工具,需要的朋友可以参考一下
    2022-05-05
  • pytest实战技巧之参数化基本用法和多种方式

    pytest实战技巧之参数化基本用法和多种方式

    本文介绍了pytest参数化的基本用法和多种方式,帮助读者更好地使用这个功能,同时,还介绍了一些高级技巧,如动态生成参数名称、参数化的组合和动态生成参数化装饰器,帮助读者更灵活地使用参数化,感兴趣的朋友参考下吧
    2023-12-12
  • nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决

    nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决

    这篇文章主要介绍了nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • python接口自动化之使用token传入到header消息头中

    python接口自动化之使用token传入到header消息头中

    这篇文章主要介绍了python接口自动化之使用token传入到header消息头中问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • python里的条件语句和循环语句你了解多少

    python里的条件语句和循环语句你了解多少

    这篇文章主要为大家详细介绍了python的条件语句和循环语句,使用数据库,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • pytorch中的优化器optimizer.param_groups用法

    pytorch中的优化器optimizer.param_groups用法

    这篇文章主要介绍了pytorch中的优化器optimizer.param_groups用法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05

最新评论