Python在画图时使用特殊符号的方法总结
本文总结了python画图中使用各种特殊符号方式
一、问题背景
在论文中,如何使用特殊符号进行表示?这里给出效果图和代码
完整代码:
from matplotlib import pyplot import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.ticker import MultipleLocator, FormatStrFormatter font_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=15) import matplotlib import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset from matplotlib.patches import ConnectionPatch %matplotlib inline plt.rcParams['figure.figsize'] = (8.0, 6.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False # 设置标题大小 plt.rcParams['font.size'] = '16' #解决画多幅图时出现图形部分重叠 fig = plt.figure() matplotlib.rcParams.update( { 'text.usetex': False, 'font.family': 'stixgeneral', 'mathtext.fontset': 'stix', } ) myfont = FontProperties(fname='/home/linuxidc/.local/share/fonts/文泉驿正黑.ttf') #准备数据 x = range(0,31,2) A=[0.2204262385828951,0.30839304560351055,0.4176158354528364,0.5689115113547377,0.7132088021728286,0.8170438670019559,0.874248496993988,0.8998229892687244,0.9022254048694502,0.9059819476369345,0.9094392004441977,0.9087585175336547,0.9070491438736936,0.9061997894620201,0.9090201312423535,0.905820399113082] B=[0.16086354829781346,0.24623673832139087,0.37067344907663385,0.5243875153820338,0.6455296269608115,0.7488125174629785,0.8000445335114674,0.8252572187188848,0.8275862068965517,0.8340528115714526,0.8372015546918379,0.837903717245582,0.8390037802979764,0.8358911851072082,0.8319986653319986,0.8359756097560975] C=[0.18306116800442845,0.2870632672332389,0.4144089350879133,0.5520192415258978,0.7109362008757829,0.8372170997485331,0.9124159429971054,0.9341066489655936,0.946792993279718,0.9503133935078769,0.9521488062187674,0.952635311063099,0.9535668223259951,0.9552372984652889,0.9439895451006562,0.9501552106430155] #绘图 fig, ax = plt.subplots(1, 1) ax.plot(x, A, marker='H',linewidth=2,markersize=7,label=r'$\alpha$') ax.plot(x, B, marker='s',linewidth=2,markersize=7,label=r'$\ell$') ax.plot(x, C, marker='D',linewidth=2,markersize=7,label=r'$\mu$') plt.grid(linestyle='-.') plt.grid(True) y_major_locator=MultipleLocator(0.1) x_major_locator=MultipleLocator(2) ax=plt.gca() ax.xaxis.set_major_locator(x_major_locator) ax.yaxis.set_major_locator(y_major_locator) plt.ylim(0,1.0) plt.xlim(0,31) plt.legend() # 让图例生效 plt.title(r'$\alpha$ aaa') plt.xlabel('X-axis',fontproperties=font_set) #X轴标签 plt.ylabel("Y-axis",fontproperties=font_set) #Y轴标签 plt.grid(linestyle='-.') plt.show()
二、注意事项
应用例子,可以在标题(title)、坐标轴名(xlabel、ylabel)、标注标签处(label)增加。注意使用label等号后面使用“r”,否则直接报错。
以此为例进行替换即可↓
ax.plot(x, A, marker='H',linewidth=2,markersize=7,label=r'$\alpha$')
三、常见特殊符号及对应代码
符号 | α | β | δ | ℓ | ε |
代码 | $\alpha$ | $\beta$ | $\delta$ | $\ell$ | $\varepsilon$ |
符号 | Φ | γ | η | ι | φ |
代码 | $\phi $ | $\gamma$ | $\eta$ | $\iota$ | $\varphi$ |
符号 | λ | μ | π | θ | ρ |
代码 | $\lambda$ | $\mu$ | $\pi$ | $\theta$ | $\rho$ |
符号 | σ | τ | ω | ξ | Γ |
代码 | $\sigma$ | $\tau$ | $\omega$ | $\xi$ | $\Gamma$ |
四、引入特殊符号的万能方法
那么肯定有人要问了,如果要表达的字符很复杂怎么办,比如带公式的。
事实上,这里有个通用方式。但是需要安装MathType。该方法在外文文献的Latex排版中也同样适用。
简单三步如下,:
①下载mathtype,并关联word
②打入你的表达式,编辑并复制
③在word输入位置黏贴
只需关注最后一行的
\[\int {\frac{{n!}}{{r!\left( {n - r} \right)!}}} \]
去掉两边的“\[”和“\]”
保留结果为
\int {\frac{{n!}}{{r!\left( {n - r} \right)!}}}
调用的时候两边加上$即可
ax.plot(x, C, marker='D',linewidth=2,markersize=7,label=r'$\int {\frac{{n!}}{{r!\left( {n - r} \right)!}}} $')
效果如下:
到此这篇关于Python在画图时使用特殊符号的方法总结的文章就介绍到这了,更多相关Python特殊符号内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python中ThreadPoolExecutor线程池和ProcessPoolExecutor进程池
这篇文章主要介绍了python中ThreadPoolExecutor线程池和ProcessPoolExecutor进程池,文章围绕主题相关资料展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下2022-06-06
最新评论