Python数据可视化之matplotlib.pyplot绘图的基本参数详解

 更新时间:2022年04月27日 10:20:25   作者:小白微  
matplotlib.pyplot模块是一个功能强大的画图模块,可以对画图的多个参数进行调整,下面这篇文章主要给大家介绍了关于Python数据可视化之matplotlib.pyplot绘图基本参数的相关资料,需要的朋友可以参考下

1.matplotlib简介

matplotlib 库是 Python 中绘制二维和三维图表的数据可视化工具

特点:

    使用简单绘图语句实现复杂绘图效果 

    以交互式操作实现渐趋精细的图形效果 

    使用嵌入式 LaTex 输出具有印刷级别的图表、科学表达式和符号文本

    对图表的组成元素实现精细化控制

三种绘图接口

  • pyplot:面向当前图
  • axes:面向对象
  • Pylab:沿用 matlab 风格

本篇文章使用plot绘图(展示变量的趋势变化 )展示绘图的基本参数,使用numpy库获得绘图数据(随机),最后出来的图形并非经过仔细思考,一切以展示图形参数为主!!!

使用的库:

import matplotlib.pyplot as plt
import numpy as np

2.图形组成元素的函数用法

  plot():展示变量的趋势变化

   使用方法:plt.plot(x, y, c,ls, lw, label, alpha, **kwargs)        

  • x,y:x,y 轴上的数值
  • c:设置颜色
  • ls:折线图的线条风格
  • lw:折线图的线条宽度
  • label:标记图形内容的标签文本
  • alpha:透明度
  •  **kwargs:指定使用的是 line2D 属性      

2.1. figure():背景颜色

使 用 方 法 :figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=Figure, clear=False, **kwargs)  

num :

 如果此参数没有提供,则一个新的 figure 对象将被创建,同时增加 figure 的计数数值,此数值被保存在 figure 对象的一个数字属性当中。如果有此参数,且存在对应 id 的 figure 对象,则激活对于 id 的 figure 对象。如果对应 id 的 figur 对象不存在,则创建它并返回它。如果 num 的值是字符串,则将窗口标题设置为此字符串

figsize:以英寸为单位的宽高,缺省值为 rc figure.figsize (1 英寸等于 2.54 厘米)

dpi:图形分辨率,缺省值为 rc figure.dpi

facecolor:背景色

plt.figure(figsize=(10, 10))
x = np.linspace(0.05, 10, 1000)  # 在0.05到10的区间中,等差选取1000个,端点不属于
y = np.sin(x)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y,
         color='red',
         ls='-',
         label='sinx')
plt.show()

2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围

 使用方法:plt.xlim(xmin,xmax)

  • xmin:x 轴上的最小值
  • xmax:x 轴上的最大值

2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本

使用方法:plt.xlabel(fontsize, verticalalignment, horizontalalignment, rotation, bbox) 

  • fontsize:数字或者(small,large,medium)
  • verticalalignment:距离坐标轴的位置(top,bottom,center,baseline)
  • hoizontalalignment:位置(center,right,left)
  • ratation:位置(vertical,horizontal,vertical)
  • bbox:添加边框

2.4 grid():绘制刻度线的网格线

使用方法:plt.grid(linestyle, color)

2.5 axhline():绘制平行于 x 轴额度水平参考线

使用方法:plt.axhline(y, c, ls, lw, label)

y:水平参考线的出发点

plt.figure(figsize=(10, 10))
x = np.linspace(0.05, 10, 1000)  # 在0.05到10的区间中,等差选取1000个,端点不属于
y = np.sin(x)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y,
         color='red',
         ls='-',
         label='sinx')
plt.xlim(1, 10)
plt.ylim(-1, 1)
plt.xlabel('x轴')
plt.ylabel('y轴')
plt.grid(ls=':',
         color='blue')  # 设置网格,颜色为蓝色
plt.axhline(0.5, color='green', lw=2, label="分割线")  # 绘制平行于x轴的水平参考线,绿色,名称
plt.show()

(上图中绿色的线即为axjline()添加的参考线)

2.6 axvspan():绘制垂直于 x 轴的参考区域

使用方法:plt.axvspan( xmin, xmax ,facecolor, alpha)

  • xmin:参考区域的起始位置
  • xmax:参考区域的终止位置
  • facecolor:参考区域的填充颜色
  • alpha:参考区域填充颜色的透明度,[0~1]

注:其使用方法也可以用在 axhspan()上

在上一段代码添加

plt.axvspan(xmin=2,
            xmax=5,
            facecolor='r',
            alpha=0.2)  # 绘制垂直于x轴的参考区域

即得到(注意:此段是区域)

2.7 xticks(),yticks()

获取或设置当前 x 轴或 y 轴刻度位置和标签(即设置 x 或 y 轴的标 签)

可以理解为设置xilim和ylim一样的效果,但可以指定范围和距离

plt.xticks(list(range(0, 12, 1)))  # 调整刻度范围和刻度标签

注意看x轴,从原来的0~10到现在的0~11,可以通过设置第三个参数设置步长,这里设置为1

2.8 annotate():添加图形内容细节的指向型注释文本

函数方法:plt.annotate()

  • s:注释文本内容
  • xy:被注释的坐标点
  • xytext:注释文字的坐标位置
  • weight:设置字体线形(Ultralight,light,normal,regular,book,medium,roman,semibold,demibold,demi,bold,heavy,extrabold,black)
  • color:设置字体颜色;也可以设置 RGB 或 RGBA 类型的颜色;但必须为[0,1]之间的浮点 数         

xycoords= 参数如下

  • figure points:图左下角的点
  • figure pixels:图左下角的像素
  • figure fraction:图的左下部分
  • axes points:坐标轴左下的点
  • axes pixels:坐标轴左下的像素
  • data:使用被注释对象的坐标系统
  • arrowprops:箭头参数,参数类型为字典 dict
  • width:箭头的宽度
  • headwidth:箭头底部以点为单位的宽度
  • headlength:箭头的长度
  • shrink:总长度的一部分,从两端“收缩”
  • facecolor:箭头颜色(如果设置了 arrowstyle 关键字,上面的参数都不可以用,可

以用这些:

  • -
  • ->
  • -[
  • |-|
  • -|>
  • <->
  • <|-
  • <|-|>
  • fancy
  • simple
  • wedge)
plt.annotate('local',
             xy=(2, 1),
             xytext=(0.5, 0.5),
             weight='bold',
             color='red',
             xycoords="data",
             arrowprops=
             dict(arrowstyle="->", connectionstyle='arc3', color='b'),
             bbox=
             dict(boxstyle="rarrow",
                  pad=0.6,
                  fc="yellow",
                  ec='k',
                  lw=1,
                  alpha=0.5)
             )

 这里的黄色箭头和蓝色细长线即为参数方法添加的参数,实际使用过程中根据自己的实际所需使用,可以认为添加对图像的一些解释

2.9 bbox:给标题增加外框

(boxstyle:方框外形;circle:椭圆;darrow:双向箭头;larrow:箭头向左;rarrow:箭

头向右;round:圆角矩形;round4:椭长方形;roundtooth:波浪形边框 1;sawtooth:

波浪形边框 2;square:长方形)

2.10 . text():添加图形内容细节的无指向型注释文本(水印)

函数方法:plt.text()

x,y:表示坐标轴上的值

weight:

  • ultralightlight
  • normal
  • regular
  • book
  • medium
  • roman
  • semibold
  • demibold
  • demi
  • bold
  • heavy
  • extrabold
  • black

xycoodrds:

  • figure points:图左下角的点
  • figure pixels:图左下角的像素
  • figure fraction:图的左下部分
  • axes points:坐标轴左下的点
  • axes pixels:坐标轴左下的像素

data:使用被注释对象的坐标系统

arrowprops:箭头参数,参数类型为字典 dict

     width:箭头的宽度

     headwidth:箭头底部以点为单位的宽度

     headlength:箭头的长度

     shrink:总长度的一部分,从两端“收缩”

     facecolor:箭头颜色

bbox:给标题增加外框

           boxstyle:方框外形

           circle:椭圆

           darrow:双向箭头

           larrow:箭头向左

           rarrow:箭头向右

           round:圆角矩形

           round4:椭长方形

           roundtooth:波浪形边框 1

           sawtooth:波浪形边框 2

           square:长方形         

plt.text(1, 1,
         "y=sinx",
         weight='bold',
         color ='b')

这里设置在坐标(1,1)上,即文字下面y=sinx的蓝色字段

2.11. title():添加图形内容的标题

plt.title("正弦函数")

2.12. legend():标示不同图形的文本标签图例

使用方法:plt.legeng()

图例在图中的地理位置:

  • best
  • upper right
  • upper left
  • lower left
  • lower right
  • right
  • center left
  • center right
  • lower center
  • upper center
  • center
plt.legend(loc="lower left") # 设置图例位置

2.13 table():向子图中添加表格

plt.table(cellText=None, cellColours=None, cellloc='right' ,colWidths=None,
rowLabels=None, rowColours=None, collLabels=None, colColours=None,
collloc='center', loc='bpttpm', bbox=None, edges='closed', **kwargs)

cellText:表格单元格文本。类型为二维字符串列表

cellColours:表格单元格背景色。类型为二位颜色值列表

cellloc:表格单元格文本的对齐方式。默认值为right

                                left

                                right

                                center

colWidths:表格单元格宽度。类型为浮点数列表

rowLabels:表格行表头文本。类型为字符串列表

rowColours:表格行表头背景色。类型为颜色列表

colLabels:表格列表头文本。类型为字符串列表

colLoc:表格行表头文本对齐方式。默认 right

                                left

                                right

                                center

colColours:表格列表头背景色。类型为颜色列表

loc:单元格相对于子图的位置

bbox:绘制表格的边界框,如果此参数不为 None,将会覆盖 loc 参数

      edges:单元格边线,该属性会影响各类单元格背景色

                        BRTL

                        open

                        closed

                        horizontal

                        vertical

3. 完整代码显示

import matplotlib.pyplot as plt
import numpy as np
 
plt.figure(figsize=(10, 10))
x = np.linspace(0.05, 10, 1000)  # 在0.05到10的区间中,等差选取1000个,端点不属于
y = np.sin(x)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(x, y,
         color='red',
         ls='-',
         label='sinx')
plt.xlim(1, 10)
plt.ylim(-1, 1)
plt.xlabel('x轴')
plt.ylabel('y轴')
plt.grid(ls=':',
         color='blue')  # 设置网格,颜色为蓝色
plt.axhline(0.5, color='green', lw=2, label="分割线")  # 绘制平行于x轴的水平参考线,绿色,名称
plt.axvspan(xmin=2,
            xmax=5,
            facecolor='r',
            alpha=0.2)  # 绘制垂直于x轴的参考区域
plt.axhspan(ymin=(-3**0.5)/2,
            ymax=(3**0.5)/2,
            facecolor='w',
            alpha=0.2)
 
plt.legend(loc="lower left")  # 设置图例位置
plt.annotate('local',
             xy=(2, 1),
             xytext=(0.5, 0.5),
             weight='bold',
             color='red',
             xycoords="data",
             arrowprops=
             dict(arrowstyle="->", connectionstyle='arc3', color='b'),
             bbox=
             dict(boxstyle="rarrow",
                  pad=0.6,
                  fc="yellow",
                  ec='k',
                  lw=1,
                  alpha=0.5)
             )
plt.xticks(list(range(0, 12, 1)))  # 调整刻度范围和刻度标签
plt.text(1, 1,
         "y=sinx",
         weight='bold',
         color ='b')
plt.title("正弦函数")
plt.show()

这串代码用于显示中文字符

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

无论画什么图,最后都得使用plt.show()用于展示图片,否则输出为空

4.折线图的线条风格      

   -:实线样式
   --:短横线样式
   -.:点划线样式
   ::虚线样式
    .:点标记
    O:圆标记
    V:倒三角标记
    ^:正三角标记
    <:左三角标记
    >:右三角表示
    1:下箭头标记13
    2:上箭头标记
    3:左箭头标记
    4:右箭头标记
    S:正方形标记
    p:五边形标记
    *:星形标记
    H:六边形标记
    +:加号标记
    X:x 标记
    D:菱形标记
    |:竖直线标记
    _:水平线标记

5. 常用颜色缩写

b 蓝色
g 绿色
r 红色
c 青色
m 品红色·
y 黄色
k 黑色
w 白色

6.总结

很多参数有时候用不上,但要知道有,存在即合理,不同参数的作用功能不同,不要任何图都加太多参数,一般有图例、标题,xy轴的范围即可。

无论使用哪个,建议先试试,实践是检验真理的唯一标准!!!

到此这篇关于Python数据可视化之matplotlib.pyplot绘图的基本参数的文章就介绍到这了,更多相关Python matplotlib.pyplot绘图参数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python绘制地理图表可视化神器pyecharts

    Python绘制地理图表可视化神器pyecharts

    这篇文章主要介绍了Python绘制地理图表可视化神器pyecharts,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • Django商城项目注册功能的实现

    Django商城项目注册功能的实现

    注册功能是网页项目必备的需求,本文提供了一个Django项目实现注册功能的示例,有此需求的同学可以参考下
    2021-06-06
  • Python入门之modf()方法的使用

    Python入门之modf()方法的使用

    这篇文章主要介绍了Python入门之modf()方法的使用,是Python学习当中的基础知识,需要的朋友可以参考下
    2015-05-05
  • Python实现序列化及csv文件读取

    Python实现序列化及csv文件读取

    这篇文章主要介绍了Python实现序列化及csv文件读取,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • 详解python 内存优化

    详解python 内存优化

    这篇文章主要介绍了python 内存优化的相关资料,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-08-08
  • Python入门教程(三十八)Python的NumPy库简介

    Python入门教程(三十八)Python的NumPy库简介

    这篇文章主要介绍了Python入门教程(三十八)Python的NumPy库简介,NumPy 是用于处理数组的 python 库,它还拥有在线性代数、傅立叶变换和矩阵领域中工作的函数,需要的朋友可以参考下
    2023-05-05
  • pandas计数 value_counts()的使用

    pandas计数 value_counts()的使用

    这篇文章主要介绍了pandas计数 value_counts()的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • 深入探索Django中间件的应用场景

    深入探索Django中间件的应用场景

    Django中间件是一种可插拔的应用程序组件,可在请求和响应处理过程中修改Django的行为。中间件可用于处理请求、响应、异常等,还可用于实现身份验证、缓存、性能监控等常用功能。通过深入探索中间件的应用场景,可以提高Django应用程序的可扩展性和灵活性
    2023-05-05
  • 利用Python统计Jira数据并可视化

    利用Python统计Jira数据并可视化

    目前公司使用 Jira 作为项目管理工具,在每一次迭代完成后的复盘会上,我们都需要针对本次迭代的 Bug 进行数据统计,以帮助管理层能更直观的了解研发的代码质量。本篇文章将介绍如何利用统计 Jira 数据,并进行可视化,需要的可以参考一下
    2022-07-07
  • 详解Python判定IP地址合法性的三种方法

    详解Python判定IP地址合法性的三种方法

    这篇文章主要介绍了详解Python判定IP地址合法性的三种方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-03-03

最新评论