详解如何基于Pyecharts绘制常见的直角坐标系图表
更新时间:2022年04月27日 16:13:19 作者:小黄同学AC
pyecharts是基于前端可视化框架echarts的Python可视化库,下面这篇文章主要给大家介绍了关于如何基于Pyecharts绘制常见的直角坐标系图表的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
1.直方图
# -*-coding:utf-8 -*- # @Time : 21:02 # @Author: 黄荣津 # @File : 1.直方图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] bar = (Bar() .add_xaxis(x_data) .add_yaxis('', y_data) ) bar.render("1.直方图.html")
2.折线图
# -*-coding:utf-8 -*- # @Time : 21:19 # @Author: 黄荣津 # @File : 2.折线图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] line = (Line() .add_xaxis(x_data) .add_yaxis('', y_data) ) line.render("2.折线图.html")
3.箱形图
# -*-coding:utf-8 -*- # @Time : 21:25 # @Author: 黄荣津 # @File : 3.箱型图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [[random.randint(100, 150) for i in range(20)] for item in x_data] class Box: pass box =( Boxplot() .add_xaxis(x_data) .add_yaxis("", (y_data)) ) box.render("3.箱型图.html")
4.散点图
# -*-coding:utf-8 -*- # @Time : 21:58 # @Author: 黄荣津 # @File : 4.散点图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] Scatter=(Scatter() .add_xaxis(x_data) .add_yaxis('', y_data) ) Scatter.render("4.散点图.html")
5.带涟漪效果散点图
# -*-coding:utf-8 -*- # @Time : 22:23 # @Author: 黄荣津 # @File : 5.带涟漪效果散点图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] effectScatter = (EffectScatter() .add_xaxis(x_data) .add_yaxis('', y_data) ) effectScatter.render("5.带涟漪效果散点图.html")
6.k线图
# -*-coding:utf-8 -*- # @Time : 22:27 # @Author: 黄荣津 # @File : 6.k线图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" date_list = ["2022/4/{}".format(i + 1) for i in range(30)] y_data = [[random.randint(200, 350) for i in range(20)] for item in date_list] kline = (Kline() .add_xaxis(date_list) .add_yaxis('', y_data) ) kline.render("6.k线图.html")
7.热力图
# -*-coding:utf-8 -*- # @Time : 22:36 # @Author: 黄荣津 # @File : 7.热力图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" data = [[i, j, random.randint(0, 100)] for i in range(24) for j in range(7)] hour_list = [str(i) for i in range(24)] week_list = ['周日', '周一', '周二', '周三', '周四', '周五', '周六'] heat = (HeatMap() .add_xaxis(hour_list) .add_yaxis("", week_list, data) ) heat.render("7.热力图.html")
8.象型图
# -*-coding:utf-8 -*- # @Time : 22:46 # @Author: 黄荣津 # @File : 8.象型图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 33] pictorialBar = (PictorialBar() .add_xaxis(x_data) .add_yaxis('', y_data) ) pictorialBar.render("8.象型图.html")
9.层叠图
# -*-coding:utf-8 -*- # @Time : 23:02 # @Author: 黄荣津 # @File : 9.层叠图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" x_data = ['python', 'java', 'c','c++', 'R', 'excel'] y_data = [143, 123, 69, 107, 90, 73] bar = (Bar() .add_xaxis(x_data) .add_yaxis('', y_data) ) line = (Line() .add_xaxis(x_data) .add_yaxis('', y_data) ) overlap = bar.overlap(line) #利用第一个图表为基础,往后的数据都将会画在第一个图表上 overlap.render("9.层叠图.html")
总结
到此这篇关于如何基于Pyecharts绘制常见的直角坐标系图表的文章就介绍到这了,更多相关Pyecharts绘制直角坐标系图表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
tensorflow 恢复指定层与不同层指定不同学习率的方法
今天小编就为大家分享一篇tensorflow 恢复指定层与不同层指定不同学习率的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-07-07
最新评论