Pytorch搭建SRGAN平台提升图片超分辨率

 更新时间:2022年04月29日 17:37:32   作者:Bubbliiiing  
这篇文章主要为大家介绍了Pytorch搭建SRGAN平台提升图片超分辨率,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

源码下载地址

网络构建

一、什么是SRGAN

SRGAN出自论文Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network。

如果将SRGAN看作一个黑匣子,其主要的功能就是输入一张低分辨率图片,生成高分辨率图片。

该文章提到,普通的超分辨率模型训练网络时只用到了均方差作为损失函数,虽然能够获得很高的峰值信噪比,但是恢复出来的图像通常会丢失高频细节。

SRGAN利用感知损失(perceptual loss)和对抗损失(adversarial loss)来提升恢复出的图片的真实感。

二、生成网络的构建

生成网络的构成如上图所示,生成网络的作用是输入一张低分辨率图片,生成高分辨率图片。:

SRGAN的生成网络由三个部分组成。

1、低分辨率图像进入后会经过一个卷积+RELU函数。

2、然后经过B个残差网络结构,每个残差结构都包含两个卷积+标准化+RELU,还有一个残差边。

3、然后进入上采样部分,在经过两次上采样后,原图的高宽变为原来的4倍,实现分辨率的提升。

前两个部分用于特征提取,第三部分用于提高分辨率。

import math
import torch
from torch import nn
class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(channels)
        self.prelu = nn.PReLU(channels)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(channels)
    def forward(self, x):
        short_cut = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.prelu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        return x + short_cut
class UpsampleBLock(nn.Module):
    def __init__(self, in_channels, up_scale):
        super(UpsampleBLock, self).__init__()
        self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, padding=1)
        self.pixel_shuffle = nn.PixelShuffle(up_scale)
        self.prelu = nn.PReLU(in_channels)
    def forward(self, x):
        x = self.conv(x)
        x = self.pixel_shuffle(x)
        x = self.prelu(x)
        return x
class Generator(nn.Module):
    def __init__(self, scale_factor, num_residual=16):
        upsample_block_num = int(math.log(scale_factor, 2))
        super(Generator, self).__init__()
        self.block_in = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=9, padding=4),
            nn.PReLU(64)
        )
        self.blocks = []
        for _ in range(num_residual):
            self.blocks.append(ResidualBlock(64))
        self.blocks = nn.Sequential(*self.blocks)
        self.block_out = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64)
        )
        self.upsample = [UpsampleBLock(64, 2) for _ in range(upsample_block_num)]
        self.upsample.append(nn.Conv2d(64, 3, kernel_size=9, padding=4))
        self.upsample = nn.Sequential(*self.upsample)
    def forward(self, x):
        x = self.block_in(x)
        short_cut = x
        x = self.blocks(x)
        x = self.block_out(x)
        upsample = self.upsample(x + short_cut)
        return torch.tanh(upsample)

三、判别网络的构建

判别网络的构成如上图所示:

SRGAN的判别网络由不断重复的 卷积+LeakyRELU和标准化 组成。
对于判断网络来讲,它的目的是判断输入图片的真假,它的输入是图片,输出是判断结果。

判断结果处于0-1之间,利用接近1代表判断为真图片,接近0代表判断为假图片。

判断网络的构建和普通卷积网络差距不大,都是不断的卷积对图片进行下采用,在多次卷积后,最终接一次全连接判断结果。

实现代码如下:

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2),
            nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2),
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2),
            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2),
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),
            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),
            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(512, 1024, kernel_size=1),
            nn.LeakyReLU(0.2),
            nn.Conv2d(1024, 1, kernel_size=1)
        )
    def forward(self, x):
        batch_size = x.size(0)
        return torch.sigmoid(self.net(x).view(batch_size))

训练思路

SRGAN的训练可以分为生成器训练和判别器训练:
每一个step中一般先训练判别器,然后训练生成器。

一、判别器的训练

在训练判别器的时候我们希望判别器可以判断输入图片的真伪,因此我们的输入就是真图片、假图片和它们对应的标签。

因此判别器的训练步骤如下:

1、随机选取batch_size个真实高分辨率图片。

2、利用resize后的低分辨率图片,传入到Generator中生成batch_size个虚假高分辨率图片。

3、真实图片的label为1,虚假图片的label为0,将真实图片和虚假图片当作训练集传入到Discriminator中进行训练。

二、生成器的训练

在训练生成器的时候我们希望生成器可以生成极为真实的假图片。因此我们在训练生成器需要知道判别器认为什么图片是真图片。

因此生成器的训练步骤如下:

1、将低分辨率图像传入生成模型,得到虚假高分辨率图像,将虚假高分辨率图像获得判别结果与1进行对比得到loss。(与1对比的意思是,让生成器根据判别器判别的结果进行训练)。

2、将真实高分辨率图像和虚假高分辨率图像传入VGG网络,获得两个图像的特征,通过这两个图像的特征进行比较获得loss

利用SRGAN生成图片

SRGAN的库整体结构如下:

一、数据集的准备

在训练前需要准备好数据集,数据集保存在datasets文件夹里面。

二、数据集的处理

打开txt_annotation.py,默认指向根目录下的datasets。运行txt_annotation.py。
此时生成根目录下面的train_lines.txt。

三、模型训练

在完成数据集处理后,运行train.py即可开始训练。

训练过程中,可在results文件夹内查看训练效果:

以上就是Pytorch搭建SRGAN平台提升图片超分辨率的详细内容,更多关于Pytorch搭建SRGAN图片超分辨率的资料请关注脚本之家其它相关文章!

相关文章

  • CentOS7.3编译安装Python3.6.2的方法

    CentOS7.3编译安装Python3.6.2的方法

    本篇文章主要介绍了CentOS7.3编译安装Python3.6.2的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-01-01
  • Python中正则表达式的用法实例汇总

    Python中正则表达式的用法实例汇总

    这篇文章主要介绍了Python中正则表达式的用法实例汇总,非常实用,需要的朋友可以参考下
    2014-08-08
  • django-xadmin根据当前登录用户动态设置表单字段默认值方式

    django-xadmin根据当前登录用户动态设置表单字段默认值方式

    这篇文章主要介绍了django-xadmin根据当前登录用户动态设置表单字段默认值方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • 利用pycharm调试ssh远程程序并实时同步文件的操作方法

    利用pycharm调试ssh远程程序并实时同步文件的操作方法

    这篇文章主要介绍了利用pycharm调试ssh远程程序并实时同步文件的操作方法,本篇文章提供了利用pycharm远程调试程序的方法,且使用的编译器可以是服务器中的虚拟环境的编译器,可以实时同步本地与服务器的文件内容,需要的朋友可以参考下
    2022-11-11
  • 使用Python从有道词典网页获取单词翻译

    使用Python从有道词典网页获取单词翻译

    这篇文章主要介绍了使用Python从有道词典网页获取单词翻译的相关资料,需要的朋友可以参考下
    2016-07-07
  • jupyter 使用Pillow包显示图像时inline显示方式

    jupyter 使用Pillow包显示图像时inline显示方式

    这篇文章主要介绍了jupyter 使用Pillow包显示图像时inline显示方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • PyTorch清理CPU缓存的实现步骤

    PyTorch清理CPU缓存的实现步骤

    在使用PyTorch进行深度学习时,频繁的数据和计算可能导致CPU缓存满载,影响性能和内存使用,适时清理CPU缓存有助于管理内存占用,下面就来介绍一下如何使用
    2024-09-09
  • django ajax发送post请求的两种方法

    django ajax发送post请求的两种方法

    这篇文章主要介绍了django ajax发送post请求的两种方法,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-01-01
  • python通过cython加密代码

    python通过cython加密代码

    这篇文章主要介绍了python通过cython实现加密的示例代码,帮助大家加密自己的python代码,提高安全性,感兴趣的朋友可以参考下
    2020-12-12
  • Python+OpenCV实现图像的全景拼接

    Python+OpenCV实现图像的全景拼接

    这篇文章主要为大家详细介绍了Python+OpenCV实现图像的全景拼接,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03

最新评论