详解Python中递归函数的原理与使用

 更新时间:2022年05月05日 08:20:19   作者:小小垂髫  
如果一个函数,可以自己调用自己,那么这个函数就是一个递归函数。本文将详细讲解Python中递归函数的使用与原理,感兴趣的可以了解一下

什么是递归函数

如果一个函数,可以自己调用自己,那么这个函数就是一个递归函数。

递归,递就是去,归就是回,递归就是一去一回的过程。

在这里插入图片描述

递归函数的条件

一般来说,递归需要边界条件,整个递归的结构中要有递归前进段递归返回段。当边界条件不满足,递归前进,反之递归返回。就是说递归函数一定需要有边界条件来控制递归函数的前进和返回。

定义一个简单的递归函数

# 定义一个函数
def recursion(num):
	
    print(num)
	if num == 0:
		return 'ok'
	
    # 这个函数在自己的作用域中调用自己,这个函数就是一个递归函数
	recursion(num-1)


recursion(10)
"""
结果:
10
9
8
7
6
5
4
3
2
1
0
"""

代码解析

我们执行这个函数,参数给了一个10,但是这个函数执行的过程中,又调用了自己,所以现在这个函数就会进入先执行第二次调用自己的过程中,第一次的调用就暂时的阻断了;

第二次调用的时候,num-1,参数就变成了9,继续执行,然后就又执行到了调用自己的代码中,现在就会执行第三次调用的过程中,第二次的调用也阻断了;

这就是 递 的过程;

…………

第十一次调用的时候,num-1,层层的嵌套,参数就变成了0,就符合了作用域中的if num == 0的条件判断式,第十一次的调用就没有再执行到了调用自己的代码,而是彻彻底底的执行完成了 ,然后代码的执行就又回到了第十次的函数调用中。

第十次的函数调用阻断的时候是执行到了recursion(num-1),但是这一行代码执行完了,也就是第十一次调用执行完了,并且后面也没有任何代码,所以第十次调用也结束了,然后就回到了第九次调用;然后第八次;再就是第七次,一直到第一次结束,整个函数的执行就结束了;

这就是 归 的过程。

在这里插入图片描述

内存栈区堆区

栈区空间就是我们常说的栈,栈是一个有去有回,先进后出后出的空间,就像我们上面的例子中讲的,我们最先执行的是函数的第一次调用,但是第一次调用却是最后执行释放掉的,而第十一次调用是最后调用,最先执行释放掉的,这就是先进后出。与栈空间概念相违背的是队列空间,队列空间是一个有去有回,先进先出的空间,就像我们平时排队一样,先排队的会比后来的人先买到票,之后我们学习并发的时候,我们会详细的讲述队列的概念。

单独的讲栈堆就是一种数据结构,栈是先进后出的一种数据结构,堆是排序后的一种树状数据结构。

栈区堆区是内存空间,栈区就是按照先进后出的数据结构,无论创建或销毁都是自动为数据分配内存,释放内存,这是系统自动创建的;堆区就是按照排序后的树状数据结构,可优先取出必要的数据,无论创建或者销毁都是手动分配内存,释放内存,这是编程工作者手动编程出来的。

内存空间特点
内存中的栈区自动分配,自动释放
内存中的堆区手动分配,手动释放

运行程序时在内存中执行,会因为数据类型的不同而在内存的不同区域运行,因不同语言对内存划分的机制不一,当大体来说,有如下四大区域:

  • 栈区:分配局部变量空间;
  • 堆区:是用于手动分配程序员申请的内存空间;
  • 静态区:又称之为全局栈区,分配静态变量,全局变量空间;
  • 代码区:又称之为只读区、常量区,分配常量和程序代码空间;

上面的栈区、读取、静态区、代码区都只是内存中的一段空间。

死递归

所以我们在使用递归函数的时候要注意,递归函数调用的过程就是一个开辟栈和释放栈的过程,调用的时候开辟栈空间,结束的时候释放栈空间,所以说,如果开辟的空间不结束就会一直存在,就会一直占用内存空间,但是栈空间是一个先进后出的空间,如果新开启的空间不释放掉,之前的空间也不会释放掉的,那么如果我们开辟的空间很多很多,但是又释放不掉,那么我们弱小的内存是否有足够的空间容纳得下这么多的栈呢?如果容纳不下,那么我们的计算机就会爆炸,所以我们在使用递归的时候要注意避免这种情况。尤其是死递归。

每次调用函数时,在内存宗都会单独开辟一个空间,配合函数运行,这个空间叫做栈帧空间。

1、递归是一去一回的过程,调用函数时,会开辟栈帧空间,函数执行结束之后,会释放栈帧空间,递归实际上就是不停地开辟和释放栈帧空间的过程,每次开辟栈帧空间,都是独立的一份,其中的资源不共享。

2、触发回的过程当最后一层栈帧空间全部执行结束的时候,会触底反弹,回到上一层空间的调用处,遇到return,会触底反弹,回到上一层的调用处

3、写递归时,必须给予递归跳出的条件,否则会发生内存溢出,可能会出现死机的情况,所以当递归的层数过多的时候,不建议使用递归。

Python中的环境递归的层数默认为1000层左右,一般都是996层。

# 下面的递归函数没有跳出递归的条件,所以是一个死递归,执行看,是不是1000左右。
def recursion(num):
	print(num)
	recursion(num+1)

recursion(1)

尾递归

简单的来说,在函数返回的时候,调用其本身,并且return语句不包含表达式,这样的一个递归函数就是一个尾递归函数。

换句话说返回的东西就是函数本身就是尾递归函数,而递归函数只是自身调用了自身而已。

一般情况下,尾递归的计算在参数中完成。

我们开始的举例是一个尾递归函数吗?不是,因为那个例子这是调用了自己本省,但是并没有返回,所以还是一个普通的递归函数而已。

使用递归的时候,我们通常在一些技术博客上看到一些关于尾递归优化的东西,这是因为尾递归无论调用多少次函数,都只会占用一份空间,只开辟一个栈帧空间,但是目前 cpython 不支持,然而最常见的解释器就是 cpython 。

Python常见的解释器:cpython、pypy、jpython。

尾递归相比普通递归的优点就是返回值不需要额外过多的运算。

实例

阶乘计算

一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。

""" 循环计算 """
def factorial(num):
   if num == 0:
      return 1
   elif num < -1:
      return '只能是零和正整数'
   count = 1
   for i in range(1, num+1):
      count *= i
   return count

res = factorial(5)
print(res)  # 120


""" 使用普通递归 """
def factorial(num):
   if num == 0:
      return 1
   elif num < -1:
      return '只能是零和正整数'
   elif num == 1:
      return num
   return num * factorial(num-1)   # 普通函数返回的是一个表达式

res = factorial(5)
print(res)  # 120


""" 使用尾递归 """
def factorial(num, count=1):
   if num == 0:
      return 1
   elif num < -1:
      return '只能是零和正整数'
   elif num == 1:
      return count
   return factorial(num-1, count*num)   # 尾递归返回的是一个函数,计算式在参数中运算

res = factorial(5)
print(res)  # 120

斐波那契数列

斐波那契数列是以0、1两个数开头,从这个数列从第3个数开始,每一个数都等于前两树之和。

# 使用循环解决
def fibonacci(num):
   x, y = 0, 1

   if num < 1:
      return '输入大于0的数字'
   elif num == 1:
      return 0
   elif num == 2:
      return 1

   for _ in range(num-2):
      x, y = y, y+x
   return y

res = fibonacci(9)
print(res)  # 21


""" 使用普通递归 """
def fibonacci(num):
   if num < 1:
      return '输入大于0的数字'
   elif num == 1:
      return 0
   elif num == 2:
      return 1

   return fibonacci(num-1) + fibonacci(num-2)

res = fibonacci(9)
print(res)  # 21


""" 使用尾递归 """
def fibonacci(num, x=0, y=1):
   if num < 1:
      return '输入大于0的数字'
   elif num == 1:
      return x
   elif num == 2:
      return y

   return fibonacci(num-1, x=y,  y=(x+y))

res = fibonacci(9)
print(res)  # 21

到此这篇关于详解Python中递归函数的原理与使用的文章就介绍到这了,更多相关Python递归函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python列表插入append(), extend(), insert()用法详解

    python列表插入append(), extend(), insert()用法详解

    在本篇文章里小编给大家整理了关于python列表插入append(), extend(), insert()用法以及相关知识点,有需要的朋友们参考下。
    2019-09-09
  • 详解Python中httptools模块的使用

    详解Python中httptools模块的使用

    httptools 是一个 HTTP 解析器,它首先提供了一个 parse_url 函数,用来解析 URL。这篇文章就来和大家聊聊它的用法吧,感兴趣的可以了解一下
    2023-03-03
  • Django用户注册并自动关联到某数据表条目的实现步骤

    Django用户注册并自动关联到某数据表条目的实现步骤

    当一个新用户注册并且你想要自动关联到特定的Box条目(假设其ID为1)时,下面给大家分享完整实现流程和步骤,对Django关联数据表条目实现代码感兴趣的朋友跟随小编一起看看吧
    2017-04-04
  • 基于Python脚本实现邮件报警功能

    基于Python脚本实现邮件报警功能

    这篇文章主要介绍了基于Python脚本实现邮件报警功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • 如何从Python的cmd中获得.py文件参数

    如何从Python的cmd中获得.py文件参数

    这篇文章主要介绍了如何从Python的cmd中获得.py文件参数操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Python逐行读取文件内容的方法总结

    Python逐行读取文件内容的方法总结

    在本篇文章里小编给大家整理的是关于Python四种逐行读取文件内容的方法,有兴趣的朋友们可以学习下。
    2020-02-02
  • python35种绘图函数详细总结

    python35种绘图函数详细总结

    Python有许多用于绘图的函数和库,比如Matplotlib,Plotly,Bokeh,Seaborn等,这只是一些常用的绘图函数和库,Python还有其他绘图工具,如Pandas、ggplot等,选择适合你需求的库,可以根据你的数据类型、图形需求和个人偏好来决定,本文给大家总结了python35种绘图函数
    2023-08-08
  • Python脚本启动应用并输入账号或密码的操作命令

    Python脚本启动应用并输入账号或密码的操作命令

    这篇文章主要介绍了Python脚本启动应用并输入账号或密码,安装所需要的模块pyautogui、subprocess、psutil等,可以通过pip安装,下面以安装pyautogui为例cmd命令行中输入,需要的朋友可以参考下
    2024-05-05
  • Python Web版语音合成实例详解

    Python Web版语音合成实例详解

    这篇文章主要介绍了Python Web版语音合成实例详解,语音合成技术能将用户输入的文字,转换成流畅自然的语音输出,并且可以支持语速、音调、音量设置,让人机沟通更自然,需要的朋友可以参考下
    2019-07-07
  • Python测试框架pytest介绍

    Python测试框架pytest介绍

    这篇文章主要介绍了Python测试框架pytest介绍,Pytest是一个非常成熟的全功能的python测试框架,有简单灵活易上手、支持参数化等优点,下面其相关内容需要的小伙伴可以参考一下
    2022-03-03

最新评论