python神经网络使用Keras进行模型的保存与读取
学习前言
开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢。
Keras中保存与读取的重要函数
1、model.save
model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。
pip install h5py
完成安装后,可以通过如下函数保存模型。
model.save("./model.hdf5")
其中,model是已经训练完成的模型,save函数传入的参数就是保存后的位置+名字。
2、load_model
load_model用于载入模型。
具体使用方式如下:
model = load_model("./model.hdf5")
其中,load_model函数传入的参数就是已经完成保存的模型的位置+名字。./表示保存在当前目录。
全部代码
这是一个简单的手写体识别例子,在之前也讲解过如何构建
python神经网络学习使用Keras进行简单分类,在最后我添加上了模型的保存与读取函数。
import numpy as np from keras.models import Sequential,load_model,save_model from keras.layers import Dense,Activation ## 全连接层 from keras.datasets import mnist from keras.utils import np_utils from keras.optimizers import RMSprop # 获取训练集 (X_train,Y_train),(X_test,Y_test) = mnist.load_data() # 首先进行标准化 X_train = X_train.reshape(X_train.shape[0],-1)/255 X_test = X_test.reshape(X_test.shape[0],-1)/255 # 计算categorical_crossentropy需要对分类结果进行categorical # 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列 Y_train = np_utils.to_categorical(Y_train,num_classes= 10) Y_test = np_utils.to_categorical(Y_test,num_classes= 10) # 构建模型 model = Sequential([ Dense(32,input_dim = 784), Activation("relu"), Dense(10), Activation("softmax") ] ) rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0) ## compile model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy']) print("\ntraining") cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 100) print("\nTest") # 测试 cost,accuracy = model.evaluate(X_test,Y_test) print("accuracy:",accuracy) # 保存模型 model.save("./model.hdf5") # 删除现有模型 del model print("model had been del") # 再次载入模型 model = load_model("./model.hdf5") # 预测 cost,accuracy = model.evaluate(X_test,Y_test) print("accuracy:",accuracy)
实验结果为:
Epoch 1/2 60000/60000 [==============================] - 6s 104us/step - loss: 0.4217 - acc: 0.8888 Epoch 2/2 60000/60000 [==============================] - 6s 99us/step - loss: 0.2240 - acc: 0.9366 Test 10000/10000 [==============================] - 1s 149us/step accuracy: 0.9419 model had been del 10000/10000 [==============================] - 1s 117us/step accuracy: 0.9419
以上就是python神经网络使用Keras进行模型的保存与读取的详细内容,更多关于Keras模型保存读取的资料请关注脚本之家其它相关文章!
相关文章
浅谈keras 的抽象后端(from keras import backend as K)
这篇文章主要介绍了浅谈keras 的抽象后端(from keras import backend as K),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-06-06python自动化测试selenium核心技术三种等待方式详解
这篇文章主要为大家介绍了python自动化测试selenium的核心技术三种等待方式示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪2021-11-11mat矩阵和npy矩阵实现互相转换(python和matlab)
这篇文章主要介绍了mat矩阵和npy矩阵实现互相转换(python和matlab),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2022-07-07linux环境部署清华大学大模型最新版 chatglm2-6b 图文教程
这篇文章主要介绍了linux环境部署清华大学大模型最新版 chatglm2-6b ,结合实例形式详细分析了Linux环境下chatglm2-6b部署相关操作步骤与注意事项,需要的朋友可以参考下2023-07-07
最新评论