python人工智能tensorflow构建循环神经网络RNN

 更新时间:2022年05月05日 09:51:56   作者:Bubbliiiing  
这篇文章主要为大家介绍了python人工智能tensorflow构建循环神经网络RNN,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

学习前言

在前一段时间已经完成了卷积神经网络的复习,现在要对循环神经网络的结构进行更深层次的明确。

RNN简介

RNN 是当前发展非常火热的神经网络中的一种,它擅长对序列数据进行处理。

什么是序列数据呢?举个例子。

现在假设有四个字,“我” “去” “吃” “饭”。我们可以对它们进行任意的排列组合。

“我去吃饭”,表示的就是我要去吃饭了。

“饭去吃我”,表示的就是饭成精了。

“我吃去饭”,表示的我要去吃‘去饭’了。

不同的排列顺序会导致不同的语意,序列数据表示的就是按照一定顺序排列的序列,这种排列一般存在一定的意义。。

所以我们知道了RNN有顺序存储的这个抽象概念,但是RNN如何学习这个概念呢?

那么,让我们来看一个传统的神经网络,也称为前馈神经网络。它有输入层,隐藏层和输出层。就像这样

对于RNN来讲,其结构示意图是这样的:

一句话可以分为N个part,比如“我去吃饭”可以分为四个字,“我” “去” “吃” “饭”,分别可以传入四个隐含层,前一个隐含层会有一个输出按照一定的比率传给后一个隐含层,比如第一个“我”输入隐含层后,有一个输出按照w1的比率输入给下一个隐含层,当第二个“去”进入隐含层时,隐含层同样要接收“我”传过来的信息。

以此类推,在到达最后一个“饭”时,最后的输出便得到了前面全部的信息。

其伪代码形式为:

rnn = RNN()
ff = FeedForwardNN()
hidden_state = [0,0,0]
for word in input:
	output,hidden_state = rnn(word,hidden_state)
prediction = ff(output)

tensorflow中RNN的相关函数

tf.nn.rnn_cell.BasicLSTMCell

tf.nn.rnn_cell.BasicRNNCell(
	num_units, 
	activation=None, 
	reuse=None, 
	name=None, 
	dtype=None, 
	**kwargs)
  • num_units:RNN单元中的神经元数量,即输出神经元数量。
  • activation:激活函数。
  • reuse:描述是否在现有范围中重用变量。如果不为True,并且现有范围已经具有给定变量,则会引发错误。
  • name:层的名称。
  • dtype:该层的数据类型。
  • kwargs:常见层属性的关键字命名属性,如trainable,当从get_config()创建cell 。

在使用时,可以定义为:

RNN_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden_units,activation=tf.nn.tanh)

在定义完成后,可以进行状态初始化:

_init_state =  RNN_cell.zero_state(batch_size,tf.float32)

tf.nn.dynamic_rnn

tf.nn.dynamic_rnn(
    cell,
    inputs,
    sequence_length=None,
    initial_state=None,
    dtype=None,
    parallel_iterations=None,
    swap_memory=False,
    time_major=False,
    scope=None
)
  • cell:上文所定义的lstm_cell。
  • inputs:RNN输入。如果time_major==false(默认),则必须是如下shape的tensor:[batch_size,max_time,…]或此类元素的嵌套元组。如果time_major==true,则必须是如下形状的tensor:[max_time,batch_size,…]或此类元素的嵌套元组。
  • sequence_length:Int32/Int64矢量大小。用于在超过批处理元素的序列长度时复制通过状态和零输出。因此,它更多的是为了性能而不是正确性。
  • initial_state:上文所定义的_init_state。
  • dtype:数据类型。
  • parallel_iterations:并行运行的迭代次数。那些不具有任何时间依赖性并且可以并行运行的操作将是。这个参数用时间来交换空间。值>>1使用更多的内存,但花费的时间更少,而较小的值使用更少的内存,但计算需要更长的时间。
  • time_major:输入和输出tensor的形状格式。如果为真,这些张量的形状必须是[max_time,batch_size,depth]。如果为假,这些张量的形状必须是[batch_size,max_time,depth]。使用time_major=true会更有效率,因为它可以避免在RNN计算的开始和结束时进行换位。但是,大多数TensorFlow数据都是批处理主数据,因此默认情况下,此函数为False。
  • scope:创建的子图的可变作用域;默认为“RNN”。

在RNN的最后,需要用该函数得出结果。

outputs,states = tf.nn.dynamic_rnn(RNN_cell,X_in,initial_state = _init_state,time_major = False)

返回的是一个元组 (outputs, state):

outputs:RNN的最后一层的输出,是一个tensor。如果为time_major== False,则它的shape为[batch_size,max_time,cell.output_size]。如果为time_major== True,则它的shape为[max_time,batch_size,cell.output_size]。

states:states是一个tensor。state是最终的状态,也就是序列中最后一个cell输出的状态。一般情况下states的形状为 [batch_size, cell.output_size],但当输入的cell为BasicLSTMCell时,states的形状为[2,batch_size, cell.output_size ],其中2也对应着LSTM中的cell state和hidden state。

整个RNN的定义过程为:

def RNN(X,weights,biases):
    #X最开始的形状为(128 batch,28 steps,28 inputs)
    #转化为(128 batch*28 steps,128 hidden)
    X = tf.reshape(X,[-1,n_inputs])
    #经过乘法后结果为(128 batch*28 steps,256 hidden)
    X_in = tf.matmul(X,weights['in'])+biases['in']
    #再次转化为(128 batch,28 steps,256 hidden) 
    X_in = tf.reshape(X_in,[-1,n_steps,n_hidden_units])
    RNN_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden_units,activation=tf.nn.tanh)
    _init_state =  RNN_cell.zero_state(batch_size,tf.float32)
    outputs,states = tf.nn.dynamic_rnn(RNN_cell,X_in,initial_state = _init_state,time_major = False)
    results = tf.matmul(states,weights['out'])+biases['out']
    return results

全部代码

该例子为手写体识别例子,将手写体的28行分别作为每一个step的输入,输入维度均为28列。

import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
lr = 0.001          #学习率
training_iters = 1000000        #学习世代数
batch_size = 128                #每一轮进入训练的训练量
n_inputs = 28                   #输入每一个隐含层的inputs维度
n_steps = 28                    #一共分为28次输入
n_hidden_units = 128           #每一个隐含层的神经元个数
n_classes = 10                  #输出共有10个
x = tf.placeholder(tf.float32,[None,n_steps,n_inputs])
y = tf.placeholder(tf.float32,[None,n_classes])
weights = {
    'in':tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
    'out':tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
}
biases = {
    'in':tf.Variable(tf.constant(0.1,shape=[n_hidden_units])),
    'out':tf.Variable(tf.constant(0.1,shape=[n_classes]))
}
def RNN(X,weights,biases):
    #X最开始的形状为(128 batch,28 steps,28 inputs)
    #转化为(128 batch*28 steps,128 hidden)
    X = tf.reshape(X,[-1,n_inputs])
    #经过乘法后结果为(128 batch*28 steps,256 hidden)
    X_in = tf.matmul(X,weights['in'])+biases['in']
    #再次转化为(128 batch,28 steps,256 hidden) 
    X_in = tf.reshape(X_in,[-1,n_steps,n_hidden_units])
    RNN_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden_units,activation=tf.nn.tanh)
    _init_state =  RNN_cell.zero_state(batch_size,tf.float32)
    outputs,states = tf.nn.dynamic_rnn(RNN_cell,X_in,initial_state = _init_state,time_major = False)
    results = tf.matmul(states,weights['out'])+biases['out']
    return results
pre = RNN(x,weights,biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pre,labels = y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pre = tf.equal(tf.argmax(y,1),tf.argmax(pre,1))
accuracy = tf.reduce_mean(tf.cast(correct_pre,tf.float32))
init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)
    step = 0
    while step*batch_size <training_iters:
        batch_xs,batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size,n_steps,n_inputs])
        sess.run(train_op,feed_dict = {
            x:batch_xs,
            y:batch_ys
        })
        if step%20 == 0:
            print(sess.run(accuracy,feed_dict = {
                x:batch_xs,
                y:batch_ys
            }))
        step += 1

以上就是python人工智能tensorflow构建循环神经网络RNN的详细内容,更多关于tensorflow构建循环神经网络RNN的资料请关注脚本之家其它相关文章!

相关文章

  • Python实现的爬虫刷回复功能示例

    Python实现的爬虫刷回复功能示例

    这篇文章主要介绍了Python实现的爬虫刷回复功能,结合实例形式分析了Python2.7基于爬虫实现的模拟登陆、刷帖、回复等功能相关实现技巧,需要的朋友可以参考下
    2018-06-06
  • python的简单四则运算语法树可视化

    python的简单四则运算语法树可视化

    这篇文章主要介绍了python的简单四则运算语法树可视化,这篇文章的内容也很简单,就是给定一个四则运算的表达式,画出它的语法树,需要的朋友可以参考下
    2023-04-04
  • PyCharm软件无法安装lxml库的问题及解决

    PyCharm软件无法安装lxml库的问题及解决

    这篇文章主要介绍了PyCharm软件无法安装lxml库的问题及解决,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • 详解Python中的日志模块logging

    详解Python中的日志模块logging

    这篇文章主要介绍了Python中的日志模块logging,包括Python下的日志级别以及模块内常用方法的使用,需要的朋友可以参考下
    2015-06-06
  • python变量的作用域是什么

    python变量的作用域是什么

    在本篇内容里小编给大家分享了关于python变量的作用域的实例及用法,有兴趣的朋友们可以学习下。
    2020-05-05
  • pandas 将索引值相加的方法

    pandas 将索引值相加的方法

    今天小编就为大家分享一篇pandas 将索引值相加的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • python中partial库的使用方法解析

    python中partial库的使用方法解析

    这篇文章主要介绍了python中partial库的使用方法解析,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下
    2022-08-08
  • python plt.plot bar 如何设置绘图尺寸大小

    python plt.plot bar 如何设置绘图尺寸大小

    这篇文章主要介绍了python plt.plot bar 设置绘图尺寸大小的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • Django实现全文检索的方法(支持中文)

    Django实现全文检索的方法(支持中文)

    这篇文章主要介绍了Django实现全文检索的方法(支持中文),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-05-05
  • Python基于多线程实现抓取数据存入数据库的方法

    Python基于多线程实现抓取数据存入数据库的方法

    这篇文章主要介绍了Python基于多线程实现抓取数据存入数据库的方法,结合实例形式分析了Python使用数据库类与多线程类进行数据抓取与写入数据库操作的具体使用技巧,需要的朋友可以参考下
    2018-06-06

最新评论