Python使用scipy进行曲线拟合的方法实例

 更新时间:2022年05月05日 11:08:26   作者:修炼之路  
这篇文章主要给大家介绍了关于Python使用scipy进行曲线拟合的相关资料,Scipy优化和拟合采用的是optimize模块,该模块提供了函数最小值(标量或多维)、曲线拟合和寻找等式的根的有用算法,需要的朋友可以参考下

导读

曲线拟合的应用在生活中随处可见,不知道大家是否还记得物理实验中的自由落体运动中下降高度与时间关系之间的探究,在初速度为0的情况下,我们想要探究下降高度与时间的关系。

我们当时采用的方法是通过设置不同的下降时间来记录下降的高度,测量记录多组数据之后,再利用二维坐标系将记录的点绘制到坐标系当中去,然后保证绘制的曲线到这些点的距离之和最小,最终得到的曲线就是h与t的关系。

绘制出h和t的关系之后,我就可以知道任意取值t在初速度为0的情况下,下降高度h对应的值。除此之外,曲线拟合的应用还有很多例如房价预测、经济预测、股价预测等。

不知道,大家有没有思考过,为什么我们可以通过测量值来绘制出t和h的关系曲线呢?这里面用到的逻辑究竟是什么呢?其实关于曲线的拟合通常有两种解决方案:

  1. 我们已经知道了自变量(x)和因变量(y)的关系,只是不知道参数,通过观察值来计算出参数,就能计算出自变量和因变量之间的关系
  2. 利用万能函数逼近器神经网络来拟合曲线,通过定义代价函数,利用已有观察值的输入值来计算出预测值,再计算出预测值与观测值的输出值之间的差距,在通过反向传播,来计算出神经网络的参数

下面我们主要探讨如何利用方法1来实现曲线的拟合

曲线拟合

曲线拟合还可以分为两种情况,第一种就是没有约束的曲线拟合,第二种就是带有约束条件的曲线拟合。scipy中提供了curve_fit函数使用非线性的最小二乘法用来拟合没有约束条件的曲线,提供了least_squares函数用来拟合带有约束条件的曲线。

  • 没有约束条件的曲线拟合

  • 带约束条件的曲线拟合

有时候在求解曲线参数的时候,会对参数的边界做出一些限制,下面就展示了在对参数的边界做出限制的情况下如何来求解的问题。我们使用jac矩阵结合最小二乘法来计算曲线的参数

import numpy as np
from scipy.optimize import least_squares
import matplotlib.pyplot as plt

def model(x,u):
    """定义拟合的曲线
    :param x:输入值自变量
    :param u:输入值函数的参数
    :return:返回值因变量
    """
    return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3])

def fun(x,u,y):
    return model(x,u) - y

def jac(x,u,y):
    J = np.empty((u.size,x.size))
    den = u ** 2 + x[2] * u + x[3]
    num = u ** 2 + x[1] * u
    J[:,0] = num / den
    J[:,1] = x[0] * u / den
    J[:,2] = -x[0] * num * u / den ** 2
    J[:,3] = -x[0] * num / den ** 2
    return J

#输入值自变量
u = np.array([4.0, 2.0, 1.0, 5.0e-1, 2.5e-1, 1.67e-1, 1.25e-1, 1.0e-1,
              8.33e-2, 7.14e-2, 6.25e-2])
#输入值因变量
y = np.array([1.957e-1, 1.947e-1, 1.735e-1, 1.6e-1, 8.44e-2, 6.27e-2,
              4.56e-2, 3.42e-2, 3.23e-2, 2.35e-2, 2.46e-2])
#函数的参数
x0 = np.array([2.5, 3.9, 4.15, 3.9])
#利用jac矩阵结合最小二乘法来计算曲线的参数,设置参数的取值在(0,100)之间
res = least_squares(fun, x0, jac=jac, bounds=(0, 100), args=(u, y), verbose=1)

#需要预测值得输入值
u_test = np.linspace(0, 5)
#利用计算的曲线参数来计算预测值
y_test = model(res.x, u_test)
plt.plot(u, y, 'o', markersize=4, label='data')
plt.plot(u_test, y_test, label='fitted model')
plt.xlabel("u")
plt.ylabel("y")
plt.legend(loc='lower right')
plt.show()

总结

到此这篇关于Python使用scipy进行曲线拟合的文章就介绍到这了,更多相关Python scipy曲线拟合内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python人工智能算法之差分进化算法的实现

    python人工智能算法之差分进化算法的实现

    DE基于GA,正如进化基于遗传,和遗传算法相比,差分进化引入了差分变异模式,相当于开辟了一条崭新的进化路径,下面就来看看差分优化算法是如何实现的吧
    2023-08-08
  • Python全栈之迭代器和高阶函数

    Python全栈之迭代器和高阶函数

    这篇文章主要为大家介绍了Python之迭代器和高阶函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • Python读取表格类型文件代码实例

    Python读取表格类型文件代码实例

    这篇文章主要介绍了Python读取表格类型文件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • 如何通过Django使用本地css/js文件

    如何通过Django使用本地css/js文件

    这篇文章主要介绍了如何通过Django使用本地css/js文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • python HTTP协议相关库requests urllib基础学习

    python HTTP协议相关库requests urllib基础学习

    这篇文章主要介绍了python HTTP协议相关库requests urllib基础学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • Python中使用双下划线防止类属性被覆盖问题

    Python中使用双下划线防止类属性被覆盖问题

    这篇文章主要介绍了Python中使用双下划线防止类属性被覆盖,需要的朋友可以参考下
    2019-06-06
  • Pip install和Conda install的使用

    Pip install和Conda install的使用

    本文主要介绍了Pip install和Conda install的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Pytorch多GPU训练过程

    Pytorch多GPU训练过程

    这篇文章主要介绍了Pytorch多GPU训练过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • Pytorch中torch.utils.checkpoint()及用法详解

    Pytorch中torch.utils.checkpoint()及用法详解

    在PyTorch中,torch.utils.checkpoint 模块提供了实现梯度检查点(也称为checkpointing)的功能,这篇文章给大家介绍了Pytorch中torch.utils.checkpoint()的相关知识,感兴趣的朋友一起看看吧
    2024-03-03
  • 超详细图解修改pip install默认安装路径的方法

    超详细图解修改pip install默认安装路径的方法

    windows环境下Python pip安装库的时候,默认安装在c盘,下面这篇文章主要给大家介绍了关于修改pip install默认安装路径的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-07-07

最新评论