Go实现分布式唯一ID的生成之雪花算法

 更新时间:2022年05月06日 09:17:34   作者:Blockchain210  
本文主要介绍了Go实现分布式唯一ID的生成之雪花算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

分布式唯一ID的生成

背景:

在分布式架构下,唯一序列号生成是我们在设计一个尤其是数据库使用分库分表的时候会常见的一个问题

特性:

全局唯一,这是基本要求,不能出现重复数字类型,趋势递增,后面的ID必须比前面的大长度短,能够提高查询效率,这也是从MySQL数据库规范出发的,尤其是ID作为主键时**信息安全,**如果ID连续生成,势必会泄露业务信息,所以需要无规则不规则高可用低延时,ID生成快,能够扛住高并发,延时足够低不至于成为业务瓶颈.

雪花算法:

​ snowflake是推特开源的分布式ID生成算法

结果: long 型的ID号(64位的ID号)

核心思想(生成的ID号是64位那么就对64位进行划分赋予特别的含义):

在这里插入图片描述

41bit-时间戳决定了该算法生成ID号的可用年限.

10bit-工作机器编号决定了该分布式系统的扩容性即机器数量.

12bit-序列号决定了每毫秒单机系统可以生成的序列号

拓展:什么是时间戳?

北京时间1970年01月01日08时00分00秒到此时时刻的总秒数

优势:

//实现方法:
package main


import (
	"errors"
	"fmt"
	"sync"
	"time"
)

/*
	雪花算法(snowFlake)的具体实现方案:
 */

type SnowFlake struct{
	mu sync.Mutex
	//雪花算法开启时的起始时间戳
	twepoch int64

	//每一部分占用的位数
	workerIdBits     int64 //每个数据中心的工作机器的编号位数
	datacenterIdBits int64 //数据中心的编号位数
	sequenceBits     int64 //每个工作机器每毫秒递增的位数

	//每一部分最大的数值
	maxWorkerId int64
	maxDatacenterId int64
	maxSequence int64

	//每一部分向左移动的位数
	workerIdShift int64
	datacenterIdShift int64
	timestampShift int64

	//当前数据中心ID号
	datacenterId int64
	//当前机器的ID号
	workerId int64
	//序列号
	sequence int64
	//上一次生成ID号前41位的毫秒时间戳
	lastTimestamp int64
}

/*
	获取毫秒的时间戳
 */
func (s *SnowFlake)timeGen()int64{
	return time.Now().UnixMilli()
}
/*
	获取比lastTimestamp大的当前毫秒时间戳
 */
func (s *SnowFlake)tilNextMills()int64{
	timeStampMill:=s.timeGen()
	for timeStampMill<=s.lastTimestamp{
		timeStampMill=s.timeGen()
	}
	return timeStampMill
}
func (s *SnowFlake)NextId()(int64,error){
	s.mu.Lock()
	defer s.mu.Unlock()
	nowTimestamp:=s.timeGen()//获取当前的毫秒级别的时间戳
	if nowTimestamp<s.lastTimestamp{
		//系统时钟倒退,倒退了s.lastTimestamp-nowTimestamp
		return -1,errors.New(fmt.Sprintf("clock moved backwards, Refusing to generate id for %d milliseconds",s.lastTimestamp-nowTimestamp))
	}
	if nowTimestamp==s.lastTimestamp{
		s.sequence=(s.sequence+1)&s.maxSequence
		if s.sequence==0{
			 //tilNextMills中有一个循环等候当前毫秒时间戳到达lastTimestamp的下一个毫秒时间戳
			nowTimestamp=s.tilNextMills()
		}
	}else{
		s.sequence=0
	}
	s.lastTimestamp=nowTimestamp
	return (nowTimestamp-s.twepoch)<<s.timestampShift| //时间戳差值部分
		s.datacenterId<<s.datacenterIdShift| //数据中心部分
		s.workerId<<s.workerIdShift| //工作机器编号部分
		s.sequence, //序列号部分
		nil
}

func NewSnowFlake(workerId int64,datacenterId int64)(*SnowFlake,error){
	mySnow:=new(SnowFlake)
	mySnow.twepoch=time.Now().Unix() //返回当前时间的时间戳(时间戳是指北京时间1970年01月01日8时0分0秒到此时时刻的总秒数)
	if workerId<0||datacenterId<0{
		return nil,errors.New("workerId or datacenterId must not lower than 0 ")
	}
	/*
		标准的雪花算法
	 */
	mySnow.workerIdBits =5
	mySnow.datacenterIdBits=5
	mySnow.sequenceBits=12

	mySnow.maxWorkerId=-1^(-1<<mySnow.workerIdBits)         //64位末尾workerIdBits位均设为1,其余设为0
	mySnow.maxDatacenterId=-1^(-1<<mySnow.datacenterIdBits) //64位末尾datacenterIdBits位均设为1,其余设为0
	mySnow.maxSequence=-1^(-1<<mySnow.sequenceBits)  //64位末尾sequenceBits位均设为1,其余设为0

	if workerId>=mySnow.maxWorkerId||datacenterId>=mySnow.maxDatacenterId{
		return nil,errors.New("workerId or datacenterId must not higher than max value ")
	}
	mySnow.workerIdShift=mySnow.sequenceBits
	mySnow.datacenterIdShift=mySnow.sequenceBits+mySnow.workerIdBits
	mySnow.timestampShift=mySnow.sequenceBits+mySnow.workerIdBits+mySnow.datacenterIdBits

	mySnow.lastTimestamp=-1
	mySnow.workerId=workerId
	mySnow.datacenterId=datacenterId

	return mySnow,nil
}



func main(){
	//模拟实验是生成并发400W个ID,所需要的时间
	mySnow,_:=NewSnowFlake(0,0)//生成雪花算法
	group:=sync.WaitGroup{}
	startTime:=time.Now()
	generateId:=func (s SnowFlake,requestNumber int){
		for i:=0;i<requestNumber;i++{
			s.NextId()
			group.Done()
		}
	}
	group.Add(4000000)
	//生成并发的数为4000000
	currentThreadNum:=400
	for i:=0;i<currentThreadNum;i++{
		generateId(*mySnow,10000)
	}
	group.Wait()
	fmt.Printf("time: %v\n",time.Now().Sub(startTime))
}

在这里插入图片描述

以上分析生成400WID号只需要803.1006ms(所以单机上可以每秒生成的ID数在400W以上)

优点:

毫秒数在高位,自增序列在低位,整个ID都是趋势递增不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成的ID性能也是非常高的可以根据自身业务特性分配bit位,非常灵活

缺陷:

1. 依赖机器时钟,如果**机器时钟回拨**,会导致重复ID生成.
2. 在单机上是递增的,但是由于设计到分布式环境下,每台机器上的时钟不可能完全同步,有时候会出现不是全局递增的情况.

如何解决单机系统中时钟回拨问题:

​ 可以分为两种情况:

1. 如果**时间回拨时间较短,比如配置5ms以内**,那么可以直接等候一定的时间,让机器时间追上来
2. 如果**时间回拨时间较长**,我们不能接收这么长的阻塞等候,那么就有两个策略,直接拒绝,抛出异常;或者通过RD时钟回滚

布式环境下,每台机器上的时钟不可能完全同步,有时候会出现不是全局递增的情况.

如何解决单机系统中时钟回拨问题:

​ 可以分为两种情况:

1. 如果**时间回拨时间较短,比如配置5ms以内**,那么可以直接等候一定的时间,让机器时间追上来
2. 如果**时间回拨时间较长**,我们不能接收这么长的阻塞等候,那么就有两个策略,直接拒绝,抛出异常;或者通过RD时钟回滚

参考博客高并发情况下,雪花ID一秒400W个,以及分布式ID算法(详析)

到此这篇关于Go实现分布式唯一ID的生成之雪花算法的文章就介绍到这了,更多相关Go分布式唯一ID 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Go语言中的逃逸分析究竟是什么?

    Go语言中的逃逸分析究竟是什么?

    这篇文章主要介绍了Go语言中的逃逸,套哟究竟是什么呢?通俗来讲,当一个对象的指针被多个方法或线程引用时,我们称这个指针发生了“逃逸”。下面文章将详细介绍Go语言中的逃逸,需要的朋友可以参考一下
    2021-09-09
  • GO中的slice使用简介(源码分析slice)

    GO中的slice使用简介(源码分析slice)

    slice(切片)是go中常见和强大的类型,这篇文章不是slice使用简介,从源码角度来分析slice的实现,slice的一些迷惑的使用方式,感兴趣的朋友跟随小编一起看看吧
    2023-06-06
  • Go语言使用MySql的方法

    Go语言使用MySql的方法

    这篇文章主要介绍了Go语言使用MySql的方法,实例分析了Go语言操作MySQL的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-02-02
  • 浅析Golang中的内存逃逸

    浅析Golang中的内存逃逸

    内存逃逸分析是go的编译器在编译期间,根据变量的类型和作用域,确定变量是堆上还是栈上。本文将通过示例浅析一下Golang中的内存逃逸,需要的可以了解一下
    2022-10-10
  • GoLang基础学习之go test测试

    GoLang基础学习之go test测试

    相信每位编程开发者们应该都知道,Golang作为一门标榜工程化的语言,提供了非常简便、实用的编写单元测试的能力,下面这篇文章主要给大家介绍了关于GoLang基础学习之go test测试的相关资料,需要的朋友可以参考下
    2022-08-08
  • Go语言中的变量声明和赋值

    Go语言中的变量声明和赋值

    这篇文章主要介绍了Go语言中的变量声明和赋值的方法,十分的细致全面,有需要的小伙伴可以参考下。
    2015-04-04
  • Go Web实战之创建项目及增加日志功能

    Go Web实战之创建项目及增加日志功能

    这篇文章主要为大家详细介绍了Go Web项目中如何实现创建项目及增加日志功能,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2022-11-11
  • Go构建WiFi局域网聊天室示例详解

    Go构建WiFi局域网聊天室示例详解

    这篇文章主要为大家介绍了Go构建WiFi局域网聊天室示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Golang使用WebSocket通信的实现

    Golang使用WebSocket通信的实现

    这篇文章主要介绍了Golang使用WebSocket通信的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • go语言中range用法

    go语言中range用法

    这篇文章主要介绍了go语言中range用法,实例分析了Go语言中range的功能及使用技巧,需要的朋友可以参考下
    2015-03-03

最新评论