C++四种case的详细介绍小结

 更新时间:2022年05月06日 09:40:25   作者:三贝勒文子  
本文主要介绍了C++四种case的详细介绍小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

在C++中,我们经常使用到类型的转换,像把一个int类型转换成char类型,一个int类型转换成double类型,这些转换属于隐式类型转换。而今天我们要来讲的是显式类型转换。C++提供了四种显式类型转换,分别是:static_cast、dynamic_cast、const_case、reinterpret_case。

一、static_case

static_case的定义为:

static_case<type_name>(expression)

type_name是转换的类型,expression是被转换的对象或者表达式。

static_case一般用于隐式转换,当type_name和express至少有一方可以隐式转换时,则可以用static进行强制类型转换。可以用于常见的int、float、double等类型转换;转换成功返回true,否则返回false(相当于C语言中的强制类型转换)。

1、基本数据类型转换

double serven_double_1 = 1.2;
std::cout<<serven_double_1<<std::endl;
 
int serven_int_1 = static_cast<int>(serven_double_1);
std::cout<<serven_int_1<<std::endl;
 
double serven_double_2 = static_cast<double>(serven_int_1);
std::cout<<serven_double_2<<std::endl;

运行结果:基本类型的转换,可以看到double类型转换成int类型后丢失了精度,这一点跟reinterpret_case不一样,reinterpret_case是底层二进制的强制拷贝和语义转换,所以不会丢失精度,后面会讲到。

2、指针和void指针的转换

int* serven_int_2 = new int(2);
void * serven_void_1 = static_cast<void*>(serven_int_2);
int *serven_int_3 = static_cast<int*>(serven_void_1);
*serven_int_2 = 6;
 
std::cout<<*serven_int_2<<std::endl;
std::cout<<*serven_int_3<<std::endl;
std::cout<<serven_void_1<<std::endl;
std::cout<<serven_int_2<<std::endl;
std::cout<<serven_int_3<<std::endl;

 运行结果:void指针和其他类型的指针进行转化的时候,他们都是指向同一个地址。

 3、父类和子类之间的转换

class SERVEN_PARENT{
public:
    SERVEN_PARENT(){}
    void Function(){
        std::cout<<"PARENT"<<std::endl;
    }
};
 
class SERVEN_CHILD : public SERVEN_PARENT{
public:
    SERVEN_CHILD(){}
    void Function(){
        std::cout<<"CHILD"<<std::endl;
    }
};
 
 
void main(){
 
    SERVEN_PARENT* ser_par = new SERVEN_PARENT();
    ser_par->Function();
    SERVEN_CHILD* ser_chi = static_cast<SERVEN_CHILD*>(ser_par);
    ser_chi->Function();
 
}

运行结果:在main函数第二行中定义了一个ser_chi,是一个派生类对象,然后强制将基类对象转换成子类,这种叫做下行转换,转换后打印的结果是子类的Function,使用static_case来进行向下转换是不安全的,因为当子类中定义了基类没有的变量,并且在Function函数中使用了这个变量,那么程序将会报错。

 下面我们来看一下static_case不安全的例子:

class SERVEN_PARENT{
public:
    SERVEN_PARENT(){}
    void Function(){
        std::cout<<"PARENT"<<std::endl;
    }
};
 
class SERVEN_CHILD : public SERVEN_PARENT{
public:
    SERVEN_CHILD(){}
    void Function(){
        std::cout<<"CHILD"<<std::endl;
        std::cout<<nums<<std::endl;
    }
 
private:
    char nums = 'g';
};
 
 
void main(){
 
    SERVEN_PARENT* ser_par = new SERVEN_PARENT();
    ser_par->Function();
    SERVEN_CHILD* ser_chi = static_cast<SERVEN_CHILD*>(ser_par);
    ser_chi->Function();
 
}

 运行结果:因为派生类对象使用了自己独有的变量,所以打印char字符的时候就出现了乱码。

二、dynamic_case

dynamic_case的定义为:

dynamic<type_name>(expression)

type_name是转换的类型,expression是被转换的对象或者表达式。

dynamic一般用于基类指向派生类时的强制转换,转换成功返回true,失败返回false。它不像static_case一样向下转换不安全,它是安全的。它的安全性体现在RTTI,那什么是RTTI呢?
RTTI是运行时类型识别。程序能够使用基类的指针或引用来检查着这些指针或引用所指的对象的实际派生类型(判断指针原型)。RTTI提供了两个非常有用的操作符:typeid和dynamic_cast。(三个最主要的东西,dynamic_cast,typeid,type_info)。typeid:typeid函数(为type_info类的友元函数,为什么要这样呢?目的是防止创建type_info对象)的主要作用就是让用户知道当前的变量是什么类型的,它可以返回一个type_info的引用,可以获取类的名称和编码typeid重载了type_info中的==和!=可以用于判断两个类型是否相等。
dynamic_case和static_case在类继承的区别就是dynamic_case向下转换是安全的。

三、const_case

const_case的定义为:

const_case<type_name>(expression)

type_name是转换的类型,expression是被转换的对象或者表达式。

const_case有两个功能,分别是去掉const和加上const,一般用于去掉const,修改被const修饰为常量的值。但是修改的这个值本身不能是const常量,而是被二次引用或者传参数时被引用为const,才能修改,否则修改失败。同时type和express两个类型要一直去掉const,修改成功返回true,否则返回false。

1、加上const

int* serven_int_4 = new int(2);
const int* serven_int_5 = const_cast<const int*>(serven_int_4);     // 转换为常量指针
*serven_int_4 = 3;
//*serven_int_5 = 4;              // 不能修改
std::cout<<*serven_int_4<<std::endl;
std::cout<<*serven_int_5<<std::endl;
std::cout<<serven_int_4<<std::endl;
std::cout<<serven_int_5<<std::endl;

2、去掉const

(1)const修饰指针,指针指向一个类对象(常量指针)

将一个常量指针转换成非常量指针。

class SERVEN_PARENT{
public:
    SERVEN_PARENT(){}
    void Function(){
        std::cout<<"PARENT"<<std::endl;
    }
};
 
class SERVEN_CHILD : public SERVEN_PARENT{
public:
    SERVEN_CHILD(){}
    void Function(){
        std::cout<<"CHILD"<<std::endl;
        std::cout<<nums<<std::endl;
    }
 
private:
    char nums = 'g';
};
 
void main(){
    SERVEN_PARENT ser_par;
    const SERVEN_PARENT* pP = &ser_par;
    SERVEN_PARENT* pP_1 = const_case<SERVEN_PARENT*>(pP);    // 强制将pP转换成非const
    
}

(2)const修饰指针指向对象的数值(指针常量)

将指针常量转换为非指针常量。

void main(){
    SERVEN_PARENT ser_par;
    SERVEN_PARENT* const pP = &ser_par;
    SERVEN_PARENT* pP_1 = const_case<SERVEN_PARENT*>(pP);    // 强制将pP转换成非const
    
}

(3)const修饰指针指向对象的数值并且修饰指针(常量指针常量)

常量指针常量可以被转换为非常量指针常量,也可以转换成指针常量或者常量指针。

void main(){
    SERVEN_PARENT ser_par;
    const SERVEN_PARENT* const pP = &ser_par;
    SERVEN_PARENT* pP_1 = const_case<SERVEN_PARENT*>(pP);    // 强制将pP转换成非const
    const SERVEN_PARENT* pP_2 = const_case<SERVEN_PARENT*>(pP);    // 强制将pP转换成常量指针
    SERVEN_PARENT* const pP_2 = const_case<SERVEN_PARENT*>(pP);    // 强制将pP转换成指针常量
 
    
}

四、reinterpret_case

reinterpret_case的定义为:

reinterpret_case<type_name>(expression)

type_name是转换的类型,expression是被转换的对象或者表达式。

reinterpret_case是一种比较粗暴的转换方式,并且是最不安全的,为什么说它粗暴呢?因为它直接去拷贝最底层的二进制,它的本质是编译器的指令,它的作用是可以把一个指针转换成一个整数,也可以把一个整数转换成一个指针。或者不同类型的指针相互转换。

double serven_double_2 = 1.20;
char* serven_char_1 = reinterpret_cast<char* >(&serven_double_2);
double* serven_double_3 = reinterpret_cast<double*>(serven_char_1);
std::cout<<*serven_double_3<<std::endl;
 
int* serven_int_6 = reinterpret_cast<int*>(&serven_double_2);
double* serven_double_4 = reinterpret_cast<double*>(serven_int_6);
std::cout<<*serven_double_3<<std::endl;

运行结果:我们可以看到reinterpret_case将double类型转换成int,再转换成double类型后精度不会丢失,而static_case会丢失。

 到此这篇关于C++四种case的详细介绍小结的文章就介绍到这了,更多相关C++ case内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 老生常谈C语言动态函数库的制作和使用(推荐)

    老生常谈C语言动态函数库的制作和使用(推荐)

    下面小编就为大家带来一篇老生常谈C语言动态函数库的制作和使用(推荐)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-08-08
  • C++实现LeetCode(137.单独的数字之二)

    C++实现LeetCode(137.单独的数字之二)

    这篇文章主要介绍了C++实现LeetCode(137.单独的数字之二),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07
  • 一文详解C++的访问说明符

    一文详解C++的访问说明符

    访问说明符是 C++ 中控制类成员(属性和方法)可访问性的关键字,它们用于封装类数据并保护其免受意外修改或滥用,本文将给大家详细的介绍一下C++的访问说明符,感兴趣的朋友可以参考下
    2024-04-04
  • C++ tuple元组的基本用法(总结)

    C++ tuple元组的基本用法(总结)

    这篇文章主要介绍了C++ tuple元组的基本用法(总结),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • C++实现LeetCode(161.一个编辑距离)

    C++实现LeetCode(161.一个编辑距离)

    这篇文章主要介绍了C++实现LeetCode(161.一个编辑距离),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07
  • C语言必背的一些经典程序代码实例

    C语言必背的一些经典程序代码实例

    C语言是一种高级编程语言,具有很多优点,下面这篇文章主要给大家介绍了关于C语言必背的一些经典程序代码,文中通过详细的实例代码介绍的非常详细,需要的朋友可以参考下
    2023-05-05
  • C++ Qt属性系统详细介绍

    C++ Qt属性系统详细介绍

    这篇文章主要介绍了C++ Qt属性系统详细介绍的相关资料,需要的朋友可以参考下
    2016-12-12
  • C++ 中的this指针详解及实例

    C++ 中的this指针详解及实例

    这篇文章主要介绍了C++ 中的this指针详解及实例的相关资料,this指针是类的一个自动生成、自动隐蔽的私有成员,它存在于类的非静态成员中,指向被调用函数所在的对象。需要的朋友可以参考下
    2017-07-07
  • C++缺省参数的具体使用

    C++缺省参数的具体使用

    缺省参数是声明或定义函数时为函数的参数指定一个默认值。本文就详细的介绍了一下C++缺省参数的具体使用,具有一定的参考价值,感兴趣的可以了解一下
    2022-01-01
  • C++中cin>>n的返回值

    C++中cin>>n的返回值

    这篇文章主要介绍了C++中cin>>n的返回值,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07

最新评论