python神经网络MobileNetV2模型的复现详解

 更新时间:2022年05月06日 16:44:53   作者:Bubbliiiing  
这篇文章主要为大家介绍了python神经网络MobileNetV2模型的复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

什么是MobileNetV2模型

MobileNet它哥MobileNetV2也是很不错的呢

MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution。

MobileNetV2是MobileNet的升级版,它具有两个特征点:

1、Inverted residuals,在ResNet50里我们认识到一个结构,bottleneck design结构,在3x3网络结构前利用1x1卷积降维,在3x3网络结构后,利用1x1卷积升维,相比直接使用3x3网络卷积效果更好,参数更少,先进行压缩,再进行扩张。而在MobileNetV2网络部分,其采用Inverted residuals结构,在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,利用1x1卷积降维,先进行扩张,再进行压缩。

2、Linear bottlenecks,为了避免Relu对特征的破坏,在在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,再利用1x1卷积降维后,不再进行Relu6层,直接进行残差网络的加法。

整体网络结构如下:(其中bottleneck进行的操作就是上述的创新操作)

MobileNetV2网络部分实现代码

#-------------------------------------------------------------#
#   MobileNetV2的网络部分
#-------------------------------------------------------------#
import math
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend
from keras import backend as K
from keras.preprocessing import image
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, Add, ZeroPadding2D, GlobalAveragePooling2D, Dropout, Dense
from keras.layers import MaxPooling2D,Activation,DepthwiseConv2D,Input,GlobalMaxPooling2D
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
# TODO Change path to v1.1
BASE_WEIGHT_PATH = ('https://github.com/JonathanCMitchell/mobilenet_v2_keras/'
                    'releases/download/v1.1/')
# relu6!
def relu6(x):
    return K.relu(x, max_value=6)
# 用于计算padding的大小
def correct_pad(inputs, kernel_size):
    img_dim = 1
    input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)
    if input_size[0] is None:
        adjust = (1, 1)
    else:
        adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
    correct = (kernel_size[0] // 2, kernel_size[1] // 2)
    return ((correct[0] - adjust[0], correct[0]),
            (correct[1] - adjust[1], correct[1]))
# 使其结果可以被8整除,因为使用到了膨胀系数α
def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
def MobileNetV2(input_shape=[224,224,3],
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                classes=1000):
    rows = input_shape[0]
    img_input = Input(shape=input_shape)
    # stem部分
    # 224,224,3 -> 112,112,32
    first_block_filters = _make_divisible(32 * alpha, 8)
    x = ZeroPadding2D(padding=correct_pad(img_input, 3),
                             name='Conv1_pad')(img_input)
    x = Conv2D(first_block_filters,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='valid',
                      use_bias=False,
                      name='Conv1')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name='bn_Conv1')(x)
    x = Activation(relu6, name='Conv1_relu')(x)
    # 112,112,32 -> 112,112,16
    x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
                            expansion=1, block_id=0)
    # 112,112,16 -> 56,56,24
    x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
                            expansion=6, block_id=1)
    x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
                            expansion=6, block_id=2)
    # 56,56,24 -> 28,28,32
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
                            expansion=6, block_id=3)
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
                            expansion=6, block_id=4)
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
                            expansion=6, block_id=5)
    # 28,28,32 -> 14,14,64
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2,
                            expansion=6, block_id=6)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=7)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=8)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=9)
    # 14,14,64 -> 14,14,96
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=10)
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=11)
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=12)
    # 14,14,96 -> 7,7,160
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2,
                            expansion=6, block_id=13)
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
                            expansion=6, block_id=14)
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
                            expansion=6, block_id=15)
    # 7,7,160 -> 7,7,320
    x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1,
                            expansion=6, block_id=16)
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280
    # 7,7,320 -> 7,7,1280
    x = Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name='Conv_1')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1_bn')(x)
    x = Activation(relu6, name='out_relu')(x)
    x = GlobalAveragePooling2D()(x)
    x = Dense(classes, activation='softmax',
                        use_bias=True, name='Logits')(x)
    inputs = img_input
    model = Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))
    # Load weights.
    if weights == 'imagenet':
        if include_top:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(
                model_name, weight_path, cache_subdir='models')
        else:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(
                model_name, weight_path, cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)
    return model
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
    in_channels = backend.int_shape(inputs)[-1]
    pointwise_conv_filters = int(filters * alpha)
    pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
    x = inputs
    prefix = 'block_{}_'.format(block_id)
    # part1 数据扩张
    if block_id:
        # Expand
        x = Conv2D(expansion * in_channels,
                          kernel_size=1,
                          padding='same',
                          use_bias=False,
                          activation=None,
                          name=prefix + 'expand')(x)
        x = BatchNormalization(epsilon=1e-3,
                                      momentum=0.999,
                                      name=prefix + 'expand_BN')(x)
        x = Activation(relu6, name=prefix + 'expand_relu')(x)
    else:
        prefix = 'expanded_conv_'
    if stride == 2:
        x = ZeroPadding2D(padding=correct_pad(x, 3),
                                 name=prefix + 'pad')(x)
    # part2 可分离卷积
    x = DepthwiseConv2D(kernel_size=3,
                               strides=stride,
                               activation=None,
                               use_bias=False,
                               padding='same' if stride == 1 else 'valid',
                               name=prefix + 'depthwise')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name=prefix + 'depthwise_BN')(x)
    x = Activation(relu6, name=prefix + 'depthwise_relu')(x)
    # part3压缩特征,而且不使用relu函数,保证特征不被破坏
    x = Conv2D(pointwise_filters,
                      kernel_size=1,
                      padding='same',
                      use_bias=False,
                      activation=None,
                      name=prefix + 'project')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name=prefix + 'project_BN')(x)
    if in_channels == pointwise_filters and stride == 1:
        return Add(name=prefix + 'add')([inputs, x])
    return x

图片预测

建立网络后,可以用以下的代码进行预测。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x
if __name__ == '__main__':
    model = MobileNetV2(input_shape=(224, 224, 3))
    model.summary()
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)
    preds = model.predict(x)
    print(np.argmax(preds))
    print('Predicted:', decode_predictions(preds, 1))

预测所需的已经训练好的MobileNetV2模型会在运行时自动下载,下载后的模型位于C:\Users\Administrator.keras\models文件夹内。

可以修改MobileNetV2内不同的alpha值实现不同depth的MobileNetV2模型。可选的alpha值有:

 Top-1Top-510-5SizeStem
MobileNetV2(alpha=0.35)39.91417.56815.4221.7M0.4M
MobileNetV2(alpha=0.50)34.80613.93811.9762.0M0.7M
MobileNetV2(alpha=0.75)30.46810.8249.1882.7M1.4M
MobileNetV2(alpha=1.0)28.6649.8588.3223.5M2.3M
MobileNetV2(alpha=1.3)25.3207.8786.7285.4M3.8M

以上就是python神经网络MobileNetV2模型的复现详解的详细内容,更多关于MobileNetV2模型复现的资料请关注脚本之家其它相关文章!

相关文章

  • 详解Python中神奇的字符串驻留机制

    详解Python中神奇的字符串驻留机制

    字符串驻留机制是Python针对字符串对象采取的一种内存优化技术。其目标是减少内存使用并提高程序的性能。这篇文章主要介绍了字符串驻留机制的简单应用,需要的可以参考一下
    2023-04-04
  • Django中使用pillow实现登录验证码功能(带刷新验证码功能)

    Django中使用pillow实现登录验证码功能(带刷新验证码功能)

    这篇文章主要介绍了Django中使用pillow实现登录验证码功能(带刷新验证码功能),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • Django的HttpRequest和HttpResponse对象详解

    Django的HttpRequest和HttpResponse对象详解

    这篇文章主要介绍了Django的HttpRequest和HttpResponse对象,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Django cookie和session的应用场景及如何使用

    Django cookie和session的应用场景及如何使用

    今天我们来重点看下Django中session和cookie的用法吧。我们会介绍cookie和session的工作原理,还会分享实际应用的案例。
    2021-04-04
  • Python实现exe小工具的详细代码

    Python实现exe小工具的详细代码

    Python exe工具是一种将Python代码打包成可执行文件的工具,它可以将Python程序转换为独立的可执行文件,使得在没有安装Python解释器的环境中也能够运行Python程序,本文给大家介绍了Python实现exe小工具的详细代码,需要的朋友可以参考下
    2024-04-04
  • Python实现SqlServer查询结果并写入多个Sheet页的方法详解

    Python实现SqlServer查询结果并写入多个Sheet页的方法详解

    这篇文章主要为大家整理了两个Python实现SqlServer查询结果并写入多个Sheet页的方法,文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-12-12
  • Pytorch之保存读取模型实例

    Pytorch之保存读取模型实例

    今天小编就为大家分享一篇Pytorch之保存读取模型实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python中的二维列表使用及说明

    Python中的二维列表使用及说明

    这篇文章主要介绍了Python中的二维列表使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • Python实现对象转换为xml的方法示例

    Python实现对象转换为xml的方法示例

    这篇文章主要介绍了Python实现对象转换为xml的方法,结合实例形式分析了Python对象属性、节点的操作及与xml相互转换的相关实现技巧,需要的朋友可以参考下
    2017-06-06
  • django-celery-beat搭建定时任务的实现

    django-celery-beat搭建定时任务的实现

    本文主要介绍了django-celery-beat搭建定时任务的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03

最新评论