PyTorch详解经典网络种含并行连结的网络GoogLeNet实现流程

 更新时间:2022年05月06日 17:21:39   作者:峡谷的小鱼  
今天小编就为大家分享一篇Pytorch实现GoogLeNet的方法,GoogLeNet提出了一个名为“Inception”的深度卷积神经网结构,其目标是将分类、识别ILSVRC14数据集的技术水平提高一个层次。这一结构的主要特征是对网络内部计算资源的利用进行了优化

含并行连结的网络 GoogLeNet

在GoogleNet出现值前,流行的网络结构使用的卷积核从1×1到11×11,卷积核的选择并没有太多的原因。GoogLeNet的提出,说明有时候使用多个不同大小的卷积核组合是有利的。

import torch
from torch import nn
from torch.nn import functional as F

1. Inception块

Inception块是 GoogLeNet 的基本组成单元。Inception 块由四条并行的路径组成,每个路径使用不同大小的卷积核:

路径1:使用 1×1 卷积层;

路径2:先对输出执行 1×1 卷积层,来减少通道数,降低模型复杂性,然后接 3×3 卷积层;

路径3:先对输出执行 1×1 卷积层,然后接 5×5 卷积层;

路径4:使用 3×3 最大汇聚层,然后使用 1×1 卷积层;

在各自路径中使用合适的 padding ,使得各个路径的输出拥有相同的高和宽,然后将每条路径的输出在通道维度上做连结,作为 Inception 块的最终输出.

class Inception(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Inception, self).__init__()
        # 路径1
        c1, c2, c3, c4 = out_channels
        self.route1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 路径2
        self.route2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.route2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 路径3
        self.route3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.route3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 路径4
        self.route4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.route4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
    def forward(self, x):
        x1 = F.relu(self.route1_1(x))
        x2 = F.relu(self.route2_2(F.relu(self.route2_1(x))))
        x3 = F.relu(self.route3_2(F.relu(self.route3_1(x))))
        x4 = F.relu(self.route4_2(self.route4_1(x)))
        return torch.cat((x1, x2, x3, x4), dim=1) 

2. 构造 GoogLeNet 网络

顺序定义 GoogLeNet 的模块。

第一个模块,顺序使用三个卷积层。

# 模型的第一个模块
b1 = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3,),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
    nn.Conv2d(64, 64, kernel_size=1),
    nn.ReLU(),
    nn.Conv2d(64, 192, kernel_size=3, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                   )

第二个模块,使用两个Inception模块。

# Inception组成的第二个模块
b2 = nn.Sequential(
    Inception(192, (64, (96, 128), (16, 32), 32)),
    Inception(256, (128, (128, 192), (32, 96), 64)),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                    )

第三个模块,串联五个Inception模块。

# Inception组成的第三个模块
b3 = nn.Sequential(
    Inception(480, (192, (96, 208), (16, 48), 64)),
    Inception(512, (160, (112, 224), (24, 64), 64)),
    Inception(512, (128, (128, 256), (24, 64), 64)),
    Inception(512, (112, (144, 288), (32, 64), 64)),
    Inception(528, (256, (160, 320), (32, 128), 128)),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                    )

第四个模块,传来两个Inception模块。

GoogLeNet使用 avg pooling layer 代替了 fully-connected layer。一方面降低了维度,另一方面也可以视为对低层特征的组合。

# Inception组成的第四个模块
b4 = nn.Sequential(
    Inception(832, (256, (160, 320), (32, 128), 128)),
    Inception(832, (384, (192, 384), (48, 128), 128)),
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten()
                    )
net = nn.Sequential(b1, b2, b3, b4, nn.Linear(1024, 10))
x = torch.randn(1, 1, 96, 96)
for layer in net:
    x = layer(x)
    print(layer.__class__.__name__, "output shape: ", x.shape)

输出:

Sequential output shape:  torch.Size([1, 192, 28, 28])
Sequential output shape:  torch.Size([1, 480, 14, 14])
Sequential output shape:  torch.Size([1, 832, 7, 7])
Sequential output shape:  torch.Size([1, 1024])
Linear output shape:  torch.Size([1, 10])

3. FashionMNIST训练测试

def load_datasets_Cifar10(batch_size, resize=None):
    trans = [transforms.ToTensor()]
    if resize:
        transform = trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    train_data = torchvision.datasets.CIFAR10(root="../data", train=True, transform=trans, download=True)
    test_data = torchvision.datasets.CIFAR10(root="../data", train=False, transform=trans, download=True)
    print("Cifar10 下载完成...")
    return (torch.utils.data.DataLoader(train_data, batch_size, shuffle=True),
            torch.utils.data.DataLoader(test_data, batch_size, shuffle=False))
def load_datasets_FashionMNIST(batch_size, resize=None):
    trans = [transforms.ToTensor()]
    if resize:
        transform = trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    train_data = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
    test_data = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)
    print("FashionMNIST 下载完成...")
    return (torch.utils.data.DataLoader(train_data, batch_size, shuffle=True),
            torch.utils.data.DataLoader(test_data, batch_size, shuffle=False))
def load_datasets(dataset, batch_size, resize):
    if dataset == "Cifar10":
        return load_datasets_Cifar10(batch_size, resize=resize)
    else:
        return load_datasets_FashionMNIST(batch_size, resize=resize)
train_iter, test_iter = load_datasets("", 128, 96) # Cifar10

训练结果:

到此这篇关于PyTorch详解经典网络种含并行连结的网络GoogLeNet实现流程的文章就介绍到这了,更多相关PyTorch GoogLeNet内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • 解读等值线图的Python绘制方法

    解读等值线图的Python绘制方法

    这篇文章主要介绍了解读等值线图的Python绘制方法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • 通过python扫描二维码/条形码并打印数据

    通过python扫描二维码/条形码并打印数据

    这篇文章主要介绍了通过python扫描二维码/条形码并打印数据,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • wxPython:python首选的GUI库实例分享

    wxPython:python首选的GUI库实例分享

    wxPython是Python语言的一套优秀的GUI图形库。允许Python程序员很方便的创建完整的、功能键全的GUI用户界面。 wxPython是作为优秀的跨平台GUI库wxWidgets的Python封装和Python模块的方式提供给用户的
    2019-10-10
  • Python实现合并PDF文件的三种方式

    Python实现合并PDF文件的三种方式

    在处理多个 PDF 文档时,频繁地打开关闭文件会严重影响效率,因此我们可以先将这些PDF文件合并起来再操作,本文将分享3种使用 Python 合并 PDF 文件的实现方法,希望对大家有所帮助
    2023-11-11
  • Python 代码性能优化技巧分享

    Python 代码性能优化技巧分享

    选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化来提高程序的执行效率
    2012-08-08
  • python使用百度文字识别功能方法详解

    python使用百度文字识别功能方法详解

    在本篇文章里小编给大家整理的是关于python怎么使用百度文字识别功能的相关知识点,有兴趣的朋友们参考下。
    2019-07-07
  • Pytorch之Variable的用法

    Pytorch之Variable的用法

    今天小编就为大家分享一篇Pytorch之Variable的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python使用FastApi发送Post请求的基本步骤

    Python使用FastApi发送Post请求的基本步骤

    FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,它基于 Python 3.6 及以上版本,在 FastAPI 中发送 POST 请求,通常是指创建一个接口来接收客户端发送的 POST 请求,以下是使用 FastAPI 处理 POST 请求的基本步骤,需要的朋友可以参考下
    2024-09-09
  • pandas如何计算移动平均值

    pandas如何计算移动平均值

    在处理金融数据分析时,常需计算移动平均值。遇到数据不足导致结果为NAN问题,可使用pandas中rolling函数的min_periods参数。设置min_periods=1即可解决,它允许窗口中的非空观测值少于窗口大小时也能计算均值,确保数据不足时也能得出结果
    2024-09-09
  • Python内置函数property()如何使用

    Python内置函数property()如何使用

    这篇文章主要介绍了Python内置函数property()如何使用,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-09-09

最新评论