Keras实现Vision Transformer VIT模型示例详解

 更新时间:2022年05月07日 17:15:31   作者:Bubbliiiing  
这篇文章主要为大家介绍了Keras实现Vision Transformer VIT模型示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

什么是Vision Transformer(VIT)

视觉Transformer最近非常的火热,从VIT开始,我先学学看。

Vision Transformer是Transformer的视觉版本,Transformer基本上已经成为了自然语言处理的标配,但是在视觉中的运用还受到限制。

Vision Transformer打破了这种NLP与CV的隔离,将Transformer应用于图像图块(patch)序列上,进一步完成图像分类任务。简单来理解,Vision Transformer就是将输入进来的图片,每隔一定的区域大小划分图片块。然后将划分后的图片块组合成序列,将组合后的结果传入Transformer特有的Multi-head Self-attention进行特征提取。最后利用Cls Token进行分类。

代码下载

Vision Transforme的实现思路

一、整体结构解析

与寻常的分类网络类似,整个Vision Transformer可以氛围两部分,一部分是特征提取部分,另一部分是分类部分。

  • 在特征提取部分,VIT所做的工作是特征提取。特征提取部分在图片中的对应区域是Patch+Position Embedding和Transformer Encoder。
  • Patch+Position Embedding的作用主要是对输入进来的图片进行分块处理,每隔一定的区域大小划分图片块。然后将划分后的图片块组合成序列。
  • 在获得序列信息后,传入Transformer Encoder进行特征提取,这是Transformer特有的Multi-head Self-attention结构,通过自注意力机制,关注每个图片块的重要程度。
  • 在分类部分,VIT所做的工作是利用提取到的特征进行分类。在进行特征提取的时候,我们会在图片序列中添加上Cls Token,该Token会作为一个单位的序列信息一起进行特征提取,提取的过程中,该Cls Token会与其它的特征进行特征交互,融合其它图片序列的特征。
  • 最终,我们利用Multi-head Self-attention结构提取特征后的Cls Token进行全连接分类。

二、网络结构解析

1、特征提取部分介绍

a、Patch+Position Embedding

Patch+Position Embedding的作用主要是对输入进来的图片进行分块处理,每隔一定的区域大小划分图片块。然后将划分后的图片块组合成序列。

该部分首先对输入进来的图片进行分块处理,处理方式其实很简单,使用的是现成的卷积。由于卷积使用的是滑动窗口的思想,我们只需要设定特定的步长,就可以输入进来的图片进行分块处理了。

在VIT中,我们常设置这个卷积的卷积核大小为16x16,步长也为16x16,此时卷积就会每隔16个像素点进行一次特征提取,由于卷积核大小为16x16,两个图片区域的特征提取过程就不会有重叠。当我们输入的图片是224, 224, 3的时候,我们可以获得一个14, 14, 768的特征层。

请添加图片描述

下一步就是将这个特征层组合成序列,组合的方式非常简单,就是将高宽维度进行平铺,14, 14, 768在高宽维度平铺后,获得一个196, 768的特征层。

平铺完成后,我们会在图片序列中添加上Cls Token,该Token会作为一个单位的序列信息一起进行特征提取,图中的这个0*就是Cls Token,我们此时获得一个197, 768的特征层。

添加完成Cls Token后,再为所有特征添加上位置信息,这样网络才有区分不同区域的能力。添加方式其实也非常简单,我们生成一个197, 768的参数矩阵,这个参数矩阵是可训练的,把这个矩阵加上197, 768的特征层即可。

到这里,Patch+Position Embedding就构建完成了,构建代码如下:

#--------------------------------------------------------------------------------------------------------------------#
#   classtoken部分是transformer的分类特征。用于堆叠到序列化后的图片特征中,作为一个单位的序列特征进行特征提取。
#
#   在利用步长为16x16的卷积将输入图片划分成14x14的部分后,将14x14部分的特征平铺,一幅图片会存在序列长度为196的特征。
#   此时生成一个classtoken,将classtoken堆叠到序列长度为196的特征上,获得一个序列长度为197的特征。
#   在特征提取的过程中,classtoken会与图片特征进行特征的交互。最终分类时,我们取出classtoken的特征,利用全连接分类。
#--------------------------------------------------------------------------------------------------------------------#
class ClassToken(Layer):
    def __init__(self, cls_initializer='zeros', cls_regularizer=None, cls_constraint=None, **kwargs):
        super(ClassToken, self).__init__(**kwargs)
        self.cls_initializer    = keras.initializers.get(cls_initializer)
        self.cls_regularizer    = keras.regularizers.get(cls_regularizer)
        self.cls_constraint     = keras.constraints.get(cls_constraint)
    def get_config(self):
        config = {
            'cls_initializer': keras.initializers.serialize(self.cls_initializer),
            'cls_regularizer': keras.regularizers.serialize(self.cls_regularizer),
            'cls_constraint': keras.constraints.serialize(self.cls_constraint),
        }
        base_config = super(ClassToken, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[1] + 1, input_shape[2])
    def build(self, input_shape):
        self.num_features = input_shape[-1]
        self.cls = self.add_weight(
            shape       = (1, 1, self.num_features),
            initializer = self.cls_initializer,
            regularizer = self.cls_regularizer,
            constraint  = self.cls_constraint,
            name        = 'cls',
        )
        super(ClassToken, self).build(input_shape)
    def call(self, inputs):
        batch_size      = tf.shape(inputs)[0]
        cls_broadcasted = tf.cast(tf.broadcast_to(self.cls, [batch_size, 1, self.num_features]), dtype = inputs.dtype)
        return tf.concat([cls_broadcasted, inputs], 1)
#--------------------------------------------------------------------------------------------------------------------#
#   为网络提取到的特征添加上位置信息。
#   以输入图片为224, 224, 3为例,我们获得的序列化后的图片特征为196, 768。加上classtoken后就是197, 768
#   此时生成的pos_Embedding的shape也为197, 768,代表每一个特征的位置信息。
#--------------------------------------------------------------------------------------------------------------------#
class AddPositionEmbs(Layer):
    def __init__(self, image_shape, patch_size, pe_initializer='zeros', pe_regularizer=None, pe_constraint=None, **kwargs):
        super(AddPositionEmbs, self).__init__(**kwargs)
        self.image_shape        = image_shape
        self.patch_size         = patch_size
        self.pe_initializer     = keras.initializers.get(pe_initializer)
        self.pe_regularizer     = keras.regularizers.get(pe_regularizer)
        self.pe_constraint      = keras.constraints.get(pe_constraint)
    def get_config(self):
        config = {
            'pe_initializer': keras.initializers.serialize(self.pe_initializer),
            'pe_regularizer': keras.regularizers.serialize(self.pe_regularizer),
            'pe_constraint': keras.constraints.serialize(self.pe_constraint),
        }
        base_config = super(AddPositionEmbs, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
    def compute_output_shape(self, input_shape):
        return input_shape
    def build(self, input_shape):
        assert (len(input_shape) == 3), f"Number of dimensions should be 3, got {len(input_shape)}"
        length  = (224 // self.patch_size) * (224 // self.patch_size) + 1
        self.pe = self.add_weight(
            # shape       = [1, input_shape[1], input_shape[2]],
            shape       = [1, length, input_shape[2]],
            initializer = self.pe_initializer,
            regularizer = self.pe_regularizer,
            constraint  = self.pe_constraint,
            name        = 'pos_embedding',
        )
        super(AddPositionEmbs, self).build(input_shape)
    def call(self, inputs):
        num_features = tf.shape(inputs)[2]
        cls_token_pe = self.pe[:, 0:1, :]
        img_token_pe = self.pe[:, 1: , :]
        img_token_pe = tf.reshape(img_token_pe, [1, (224 // self.patch_size), (224 // self.patch_size), num_features])
        img_token_pe = tf.image.resize_bicubic(img_token_pe, (self.image_shape[0] // self.patch_size, self.image_shape[1] // self.patch_size), align_corners=False)
        img_token_pe = tf.reshape(img_token_pe, [1, -1, num_features])
        pe = tf.concat([cls_token_pe, img_token_pe], axis = 1)
        return inputs + tf.cast(pe, dtype=inputs.dtype)
def VisionTransformer(input_shape = [224, 224], patch_size = 16, num_layers = 12, num_features = 768, num_heads = 12, mlp_dim = 3072, 
            classes = 1000, dropout = 0.1):
    #-----------------------------------------------#
    #   224, 224, 3
    #-----------------------------------------------#
    inputs      = Input(shape = (input_shape[0], input_shape[1], 3))
    #-----------------------------------------------#
    #   224, 224, 3 -> 14, 14, 768
    #-----------------------------------------------#
    x           = Conv2D(num_features, patch_size, strides = patch_size, padding = "valid", name = "patch_embed.proj")(inputs)
    #-----------------------------------------------#
    #   14, 14, 768 -> 196, 768
    #-----------------------------------------------#
    x           = Reshape(((input_shape[0] // patch_size) * (input_shape[1] // patch_size), num_features))(x)
    #-----------------------------------------------#
    #   196, 768 -> 197, 768
    #-----------------------------------------------#
    x           = ClassToken(name="cls_token")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768
    #-----------------------------------------------#
    x           = AddPositionEmbs(input_shape, patch_size, name="pos_embed")(x)
b、Transformer Encoder

在上一步获得shape为197, 768的序列信息后,将序列信息传入Transformer Encoder进行特征提取,这是Transformer特有的Multi-head Self-attention结构,通过自注意力机制,关注每个图片块的重要程度。

I、Self-attention结构解析

看懂Self-attention结构,其实看懂下面这个动图就可以了,动图中存在一个序列的三个单位输入,每一个序列单位的输入都可以通过三个处理(比如全连接)获得Query、Key、Value,Query是查询向量、Key是键向量、Value值向量。

请添加图片描述

如果我们想要获得input-1的输出,那么我们进行如下几步:

1、利用input-1的查询向量,分别乘上input-1、input-2、input-3的键向量,此时我们获得了三个score。

2、然后对这三个score取softmax,获得了input-1、input-2、input-3各自的重要程度。

3、然后将这个重要程度乘上input-1、input-2、input-3的值向量,求和。

4、此时我们获得了input-1的输出。

如图所示,我们进行如下几步:

1、input-1的查询向量为[1, 0, 2],分别乘上input-1、input-2、input-3的键向量,获得三个score为2,4,4。

2、然后对这三个score取softmax,获得了input-1、input-2、input-3各自的重要程度,获得三个重要程度为0.0,0.5,0.5。

3、然后将这个重要程度乘上input-1、input-2、input-3的值向量,求和,即0.0 ∗ [ 1 , 2 , 3 ] + 0.5 ∗ [ 2 , 8 , 0 ] + 0.5 ∗ [ 2 , 6 , 3 ] = [ 2.0 , 7.0 , 1.5 ] 0.0 * [1, 2, 3] + 0.5 * [2, 8, 0] + 0.5 * [2, 6, 3] = [2.0, 7.0, 1.5] 0.0∗[1,2,3]+0.5∗[2,8,0]+0.5∗[2,6,3]=[2.0,7.0,1.5]。

4、此时我们获得了input-1的输出 [2.0, 7.0, 1.5]。

上述的例子中,序列长度仅为3,每个单位序列的特征长度仅为3,在VIT的Transformer Encoder中,序列长度为197,每个单位序列的特征长度为768 // num_heads。但计算过程是一样的。在实际运算时,我们采用矩阵进行运算。

II、Self-attention的矩阵运算

实际的矩阵运算过程如下图所示。我以实际矩阵为例子给大家解析:

输入的Query、Key、Value如下图所示:

首先利用 查询向量query 叉乘 转置后的键向量key,这一步可以通俗的理解为,利用查询向量去查询序列的特征,获得序列每个部分的重要程度score。

输出的每一行,都代表input-1、input-2、input-3,对当前input的贡献,我们对这个贡献值取一个softmax。

然后利用 score 叉乘 value,这一步可以通俗的理解为,将序列每个部分的重要程度重新施加到序列的值上去。

这个矩阵运算的代码如下所示,各位同学可以自己试试。

import numpy as np
def soft_max(z):
    t = np.exp(z)
    a = np.exp(z) / np.expand_dims(np.sum(t, axis=1), 1)
    return a
Query = np.array([
    [1,0,2],
    [2,2,2],
    [2,1,3]
])
Key = np.array([
    [0,1,1],
    [4,4,0],
    [2,3,1]
])
Value = np.array([
    [1,2,3],
    [2,8,0],
    [2,6,3]
])
scores = Query @ Key.T
print(scores)
scores = soft_max(scores)
print(scores)
out = scores @ Value
print(out)

III、MultiHead多头注意力机制

多头注意力机制的示意图如图所示:

这幅图给人的感觉略显迷茫,我们跳脱出这个图,直接从矩阵的shape入手会清晰很多。

在第一步进行图像的分割后,我们获得的特征层为197, 768。

在施加多头的时候,我们直接对196, 768的最后一维度进行分割,比如我们想分割成12个头,那么矩阵的shepe就变成了196, 12, 64。

然后我们将196, 12, 64进行转置,将12放到前面去,获得的特征层为12, 196, 64。之后我们忽略这个12,把它和batch维度同等对待,只对196, 64进行处理,其实也就是上面的注意力机制的过程了。

#--------------------------------------------------------------------------------------------------------------------#
#   Attention机制
#   将输入的特征qkv特征进行划分,首先生成query, key, value。query是查询向量、key是键向量、v是值向量。
#   然后利用 查询向量query 叉乘 转置后的键向量key,这一步可以通俗的理解为,利用查询向量去查询序列的特征,获得序列每个部分的重要程度score。
#   然后利用 score 叉乘 value,这一步可以通俗的理解为,将序列每个部分的重要程度重新施加到序列的值上去。
#--------------------------------------------------------------------------------------------------------------------#
class Attention(Layer):
    def __init__(self, num_features, num_heads, **kwargs):
        super(Attention, self).__init__(**kwargs)
        self.num_features   = num_features
        self.num_heads      = num_heads
        self.projection_dim = num_features // num_heads
    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[1], input_shape[2] // 3)
    def call(self, inputs):
        #-----------------------------------------------#
        #   获得batch_size
        #-----------------------------------------------#
        bs      = tf.shape(inputs)[0]
        #-----------------------------------------------#
        #   b, 197, 3 * 768 -> b, 197, 3, 12, 64
        #-----------------------------------------------#
        inputs  = tf.reshape(inputs, [bs, -1, 3, self.num_heads, self.projection_dim])
        #-----------------------------------------------#
        #   b, 197, 3, 12, 64 -> 3, b, 12, 197, 64
        #-----------------------------------------------#
        inputs  = tf.transpose(inputs, [2, 0, 3, 1, 4])
        #-----------------------------------------------#
        #   将query, key, value划分开
        #   query     b, 12, 197, 64
        #   key       b, 12, 197, 64
        #   value     b, 12, 197, 64
        #-----------------------------------------------#
        query, key, value = inputs[0], inputs[1], inputs[2]
        #-----------------------------------------------#
        #   b, 12, 197, 64 @ b, 12, 197, 64 = b, 12, 197, 197
        #-----------------------------------------------#
        score           = tf.matmul(query, key, transpose_b=True)
        #-----------------------------------------------#
        #   进行数量级的缩放
        #-----------------------------------------------#
        scaled_score    = score / tf.math.sqrt(tf.cast(self.projection_dim, score.dtype))
        #-----------------------------------------------#
        #   b, 12, 197, 197 -> b, 12, 197, 197
        #-----------------------------------------------#
        weights         = tf.nn.softmax(scaled_score, axis=-1)
        #-----------------------------------------------#
        #   b, 12, 197, 197 @ b, 12, 197, 64 = b, 12, 197, 64
        #-----------------------------------------------#
        value          = tf.matmul(weights, value)
        #-----------------------------------------------#
        #   b, 12, 197, 64 -> b, 197, 12, 64
        #-----------------------------------------------#
        value = tf.transpose(value, perm=[0, 2, 1, 3])
        #-----------------------------------------------#
        #   b, 197, 12, 64 -> b, 197, 768
        #-----------------------------------------------#
        output = tf.reshape(value, (tf.shape(value)[0], tf.shape(value)[1], -1))
        return output
def MultiHeadSelfAttention(inputs, num_features, num_heads, dropout, name):
    #-----------------------------------------------#
    #   qkv   b, 197, 768 -> b, 197, 3 * 768
    #-----------------------------------------------#
    qkv = Dense(int(num_features * 3), name = name + "qkv")(inputs)
    #-----------------------------------------------#
    #   b, 197, 3 * 768 -> b, 197, 768
    #-----------------------------------------------#
    x   = Attention(num_features, num_heads)(qkv)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768
    #-----------------------------------------------#
    x   = Dense(num_features, name = name + "proj")(x)
    x   = Dropout(dropout)(x)
    return x

IV、TransformerBlock的构建。

在完成MultiHeadSelfAttention的构建后,我们需要在其后加上两个全连接。就构建了整个TransformerBlock。

def MLP(y, num_features, mlp_dim, dropout, name):
    y = Dense(mlp_dim, name = name + "fc1")(y)
    y = Gelu()(y)
    y = Dropout(dropout)(y)
    y = Dense(num_features, name = name + "fc2")(y)
    return y
def TransformerBlock(inputs, num_features, num_heads, mlp_dim, dropout, name):
    #-----------------------------------------------#
    #   施加层标准化
    #-----------------------------------------------#
    x = LayerNormalization(epsilon=1e-6, name = name + "norm1")(inputs)
    #-----------------------------------------------#
    #   施加多头注意力机制
    #-----------------------------------------------#
    x = MultiHeadSelfAttention(x, num_features, num_heads, dropout, name = name + "attn.")
    x = Dropout(dropout)(x)
    #-----------------------------------------------#
    #   施加残差结构
    #-----------------------------------------------#
    x = Add()([x, inputs])
    #-----------------------------------------------#
    #   施加层标准化
    #-----------------------------------------------#
    y = LayerNormalization(epsilon=1e-6, name = name + "norm2")(x)
    #-----------------------------------------------#
    #   施加两次全连接
    #-----------------------------------------------#
    y = MLP(y, num_features, mlp_dim, dropout, name = name + "mlp.")
    y = Dropout(dropout)(y)
    #-----------------------------------------------#
    #   施加残差结构
    #-----------------------------------------------#
    y = Add()([x, y])
    return y
c、整个VIT模型的构建

整个VIT模型由一个Patch+Position Embedding加上多个TransformerBlock组成。典型的TransforerBlock的数量为12个。

def VisionTransformer(input_shape = [224, 224], patch_size = 16, num_layers = 12, num_features = 768, num_heads = 12, mlp_dim = 3072, 
            classes = 1000, dropout = 0.1):
    #-----------------------------------------------#
    #   224, 224, 3
    #-----------------------------------------------#
    inputs      = Input(shape = (input_shape[0], input_shape[1], 3))
    #-----------------------------------------------#
    #   224, 224, 3 -> 14, 14, 768
    #-----------------------------------------------#
    x           = Conv2D(num_features, patch_size, strides = patch_size, padding = "valid", name = "patch_embed.proj")(inputs)
    #-----------------------------------------------#
    #   14, 14, 768 -> 196, 768
    #-----------------------------------------------#
    x           = Reshape(((input_shape[0] // patch_size) * (input_shape[1] // patch_size), num_features))(x)
    #-----------------------------------------------#
    #   196, 768 -> 197, 768
    #-----------------------------------------------#
    x           = ClassToken(name="cls_token")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768
    #-----------------------------------------------#
    x           = AddPositionEmbs(input_shape, patch_size, name="pos_embed")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768  12次
    #-----------------------------------------------#
    for n in range(num_layers):
        x = TransformerBlock(
            x,
            num_features= num_features,
            num_heads   = num_heads,
            mlp_dim     = mlp_dim,
            dropout     = dropout,
            name        = "blocks." + str(n) + ".",
        )
    x = LayerNormalization(
        epsilon=1e-6, name="norm"
    )(x)

2、分类部分

在分类部分,VIT所做的工作是利用提取到的特征进行分类。

在进行特征提取的时候,我们会在图片序列中添加上Cls Token,该Token会作为一个单位的序列信息一起进行特征提取,提取的过程中,该Cls Token会与其它的特征进行特征交互,融合其它图片序列的特征。

最终,我们利用Multi-head Self-attention结构提取特征后的Cls Token进行全连接分类。

def VisionTransformer(input_shape = [224, 224], patch_size = 16, num_layers = 12, num_features = 768, num_heads = 12, mlp_dim = 3072, 
            classes = 1000, dropout = 0.1):
    #-----------------------------------------------#
    #   224, 224, 3
    #-----------------------------------------------#
    inputs      = Input(shape = (input_shape[0], input_shape[1], 3))
    #-----------------------------------------------#
    #   224, 224, 3 -> 14, 14, 768
    #-----------------------------------------------#
    x           = Conv2D(num_features, patch_size, strides = patch_size, padding = "valid", name = "patch_embed.proj")(inputs)
    #-----------------------------------------------#
    #   14, 14, 768 -> 196, 768
    #-----------------------------------------------#
    x           = Reshape(((input_shape[0] // patch_size) * (input_shape[1] // patch_size), num_features))(x)
    #-----------------------------------------------#
    #   196, 768 -> 197, 768
    #-----------------------------------------------#
    x           = ClassToken(name="cls_token")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768
    #-----------------------------------------------#
    x           = AddPositionEmbs(input_shape, patch_size, name="pos_embed")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768  12次
    #-----------------------------------------------#
    for n in range(num_layers):
        x = TransformerBlock(
            x,
            num_features= num_features,
            num_heads   = num_heads,
            mlp_dim     = mlp_dim,
            dropout     = dropout,
            name        = "blocks." + str(n) + ".",
        )
    x = LayerNormalization(
        epsilon=1e-6, name="norm"
    )(x)
    x = Lambda(lambda v: v[:, 0], name="ExtractToken")(x)
    x = Dense(classes, name="head")(x)
    x = Softmax()(x)
    return keras.models.Model(inputs, x)

Vision Transforme的构建代码

import math
import keras
import tensorflow as tf
from keras import backend as K
from keras.layers import (Add, Conv2D, Dense, Dropout, Input, Lambda, Layer,
                          Reshape, Softmax)
#--------------------------------------#
#   LayerNormalization
#   层标准化的实现
#--------------------------------------#
class LayerNormalization(keras.layers.Layer):
    def __init__(self,
                 center=True,
                 scale=True,
                 epsilon=None,
                 gamma_initializer='ones',
                 beta_initializer='zeros',
                 gamma_regularizer=None,
                 beta_regularizer=None,
                 gamma_constraint=None,
                 beta_constraint=None,
                 **kwargs):
        """Layer normalization layer
        See: [Layer Normalization](https://arxiv.org/pdf/1607.06450.pdf)
        :param center: Add an offset parameter if it is True.
        :param scale: Add a scale parameter if it is True.
        :param epsilon: Epsilon for calculating variance.
        :param gamma_initializer: Initializer for the gamma weight.
        :param beta_initializer: Initializer for the beta weight.
        :param gamma_regularizer: Optional regularizer for the gamma weight.
        :param beta_regularizer: Optional regularizer for the beta weight.
        :param gamma_constraint: Optional constraint for the gamma weight.
        :param beta_constraint: Optional constraint for the beta weight.
        :param kwargs:
        """
        super(LayerNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.center = center
        self.scale = scale
        if epsilon is None:
            epsilon = K.epsilon() * K.epsilon()
        self.epsilon = epsilon
        self.gamma_initializer = keras.initializers.get(gamma_initializer)
        self.beta_initializer = keras.initializers.get(beta_initializer)
        self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
        self.beta_regularizer = keras.regularizers.get(beta_regularizer)
        self.gamma_constraint = keras.constraints.get(gamma_constraint)
        self.beta_constraint = keras.constraints.get(beta_constraint)
        self.gamma, self.beta = None, None
    def get_config(self):
        config = {
            'center': self.center,
            'scale': self.scale,
            'epsilon': self.epsilon,
            'gamma_initializer': keras.initializers.serialize(self.gamma_initializer),
            'beta_initializer': keras.initializers.serialize(self.beta_initializer),
            'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
            'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer),
            'gamma_constraint': keras.constraints.serialize(self.gamma_constraint),
            'beta_constraint': keras.constraints.serialize(self.beta_constraint),
        }
        base_config = super(LayerNormalization, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
    def compute_output_shape(self, input_shape):
        return input_shape
    def compute_mask(self, inputs, input_mask=None):
        return input_mask
    def build(self, input_shape):
        shape = input_shape[-1:]
        if self.scale:
            self.gamma = self.add_weight(
                shape=shape,
                initializer=self.gamma_initializer,
                regularizer=self.gamma_regularizer,
                constraint=self.gamma_constraint,
                name='gamma',
            )
        if self.center:
            self.beta = self.add_weight(
                shape=shape,
                initializer=self.beta_initializer,
                regularizer=self.beta_regularizer,
                constraint=self.beta_constraint,
                name='beta',
            )
        super(LayerNormalization, self).build(input_shape)
    def call(self, inputs, training=None):
        mean = K.mean(inputs, axis=-1, keepdims=True)
        variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
        std = K.sqrt(variance + self.epsilon)
        outputs = (inputs - mean) / std
        if self.scale:
            outputs *= self.gamma
        if self.center:
            outputs += self.beta
        return outputs
#--------------------------------------#
#   Gelu激活函数的实现
#   利用近似的数学公式
#--------------------------------------#
class Gelu(Layer):
    def __init__(self, **kwargs):
        super(Gelu, self).__init__(**kwargs)
        self.supports_masking = True
    def call(self, inputs):
        return 0.5 * inputs * (1 + tf.tanh(tf.sqrt(2 / math.pi) * (inputs + 0.044715 * tf.pow(inputs, 3))))
    def get_config(self):
        config = super(Gelu, self).get_config()
        return config
    def compute_output_shape(self, input_shape):
        return input_shape
#--------------------------------------------------------------------------------------------------------------------#
#   classtoken部分是transformer的分类特征。用于堆叠到序列化后的图片特征中,作为一个单位的序列特征进行特征提取。
#
#   在利用步长为16x16的卷积将输入图片划分成14x14的部分后,将14x14部分的特征平铺,一幅图片会存在序列长度为196的特征。
#   此时生成一个classtoken,将classtoken堆叠到序列长度为196的特征上,获得一个序列长度为197的特征。
#   在特征提取的过程中,classtoken会与图片特征进行特征的交互。最终分类时,我们取出classtoken的特征,利用全连接分类。
#--------------------------------------------------------------------------------------------------------------------#
class ClassToken(Layer):
    def __init__(self, cls_initializer='zeros', cls_regularizer=None, cls_constraint=None, **kwargs):
        super(ClassToken, self).__init__(**kwargs)
        self.cls_initializer    = keras.initializers.get(cls_initializer)
        self.cls_regularizer    = keras.regularizers.get(cls_regularizer)
        self.cls_constraint     = keras.constraints.get(cls_constraint)
    def get_config(self):
        config = {
            'cls_initializer': keras.initializers.serialize(self.cls_initializer),
            'cls_regularizer': keras.regularizers.serialize(self.cls_regularizer),
            'cls_constraint': keras.constraints.serialize(self.cls_constraint),
        }
        base_config = super(ClassToken, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[1] + 1, input_shape[2])
    def build(self, input_shape):
        self.num_features = input_shape[-1]
        self.cls = self.add_weight(
            shape       = (1, 1, self.num_features),
            initializer = self.cls_initializer,
            regularizer = self.cls_regularizer,
            constraint  = self.cls_constraint,
            name        = 'cls',
        )
        super(ClassToken, self).build(input_shape)
    def call(self, inputs):
        batch_size      = tf.shape(inputs)[0]
        cls_broadcasted = tf.cast(tf.broadcast_to(self.cls, [batch_size, 1, self.num_features]), dtype = inputs.dtype)
        return tf.concat([cls_broadcasted, inputs], 1)
#--------------------------------------------------------------------------------------------------------------------#
#   为网络提取到的特征添加上位置信息。
#   以输入图片为224, 224, 3为例,我们获得的序列化后的图片特征为196, 768。加上classtoken后就是197, 768
#   此时生成的pos_Embedding的shape也为197, 768,代表每一个特征的位置信息。
#--------------------------------------------------------------------------------------------------------------------#
class AddPositionEmbs(Layer):
    def __init__(self, image_shape, patch_size, pe_initializer='zeros', pe_regularizer=None, pe_constraint=None, **kwargs):
        super(AddPositionEmbs, self).__init__(**kwargs)
        self.image_shape        = image_shape
        self.patch_size         = patch_size
        self.pe_initializer     = keras.initializers.get(pe_initializer)
        self.pe_regularizer     = keras.regularizers.get(pe_regularizer)
        self.pe_constraint      = keras.constraints.get(pe_constraint)
    def get_config(self):
        config = {
            'pe_initializer': keras.initializers.serialize(self.pe_initializer),
            'pe_regularizer': keras.regularizers.serialize(self.pe_regularizer),
            'pe_constraint': keras.constraints.serialize(self.pe_constraint),
        }
        base_config = super(AddPositionEmbs, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
    def compute_output_shape(self, input_shape):
        return input_shape
    def build(self, input_shape):
        assert (len(input_shape) == 3), f"Number of dimensions should be 3, got {len(input_shape)}"
        length  = (224 // self.patch_size) * (224 // self.patch_size) + 1
        self.pe = self.add_weight(
            # shape       = [1, input_shape[1], input_shape[2]],
            shape       = [1, length, input_shape[2]],
            initializer = self.pe_initializer,
            regularizer = self.pe_regularizer,
            constraint  = self.pe_constraint,
            name        = 'pos_embedding',
        )
        super(AddPositionEmbs, self).build(input_shape)
    def call(self, inputs):
        num_features = tf.shape(inputs)[2]
        cls_token_pe = self.pe[:, 0:1, :]
        img_token_pe = self.pe[:, 1: , :]
        img_token_pe = tf.reshape(img_token_pe, [1, (224 // self.patch_size), (224 // self.patch_size), num_features])
        img_token_pe = tf.image.resize_bicubic(img_token_pe, (self.image_shape[0] // self.patch_size, self.image_shape[1] // self.patch_size), align_corners=False)
        img_token_pe = tf.reshape(img_token_pe, [1, -1, num_features])
        pe = tf.concat([cls_token_pe, img_token_pe], axis = 1)
        return inputs + tf.cast(pe, dtype=inputs.dtype)
#--------------------------------------------------------------------------------------------------------------------#
#   Attention机制
#   将输入的特征qkv特征进行划分,首先生成query, key, value。query是查询向量、key是键向量、v是值向量。
#   然后利用 查询向量query 叉乘 转置后的键向量key,这一步可以通俗的理解为,利用查询向量去查询序列的特征,获得序列每个部分的重要程度score。
#   然后利用 score 叉乘 value,这一步可以通俗的理解为,将序列每个部分的重要程度重新施加到序列的值上去。
#--------------------------------------------------------------------------------------------------------------------#
class Attention(Layer):
    def __init__(self, num_features, num_heads, **kwargs):
        super(Attention, self).__init__(**kwargs)
        self.num_features   = num_features
        self.num_heads      = num_heads
        self.projection_dim = num_features // num_heads
    def compute_output_shape(self, input_shape):
        return (input_shape[0], input_shape[1], input_shape[2] // 3)
    def call(self, inputs):
        #-----------------------------------------------#
        #   获得batch_size
        #-----------------------------------------------#
        bs      = tf.shape(inputs)[0]
        #-----------------------------------------------#
        #   b, 197, 3 * 768 -> b, 197, 3, 12, 64
        #-----------------------------------------------#
        inputs  = tf.reshape(inputs, [bs, -1, 3, self.num_heads, self.projection_dim])
        #-----------------------------------------------#
        #   b, 197, 3, 12, 64 -> 3, b, 12, 197, 64
        #-----------------------------------------------#
        inputs  = tf.transpose(inputs, [2, 0, 3, 1, 4])
        #-----------------------------------------------#
        #   将query, key, value划分开
        #   query     b, 12, 197, 64
        #   key       b, 12, 197, 64
        #   value     b, 12, 197, 64
        #-----------------------------------------------#
        query, key, value = inputs[0], inputs[1], inputs[2]
        #-----------------------------------------------#
        #   b, 12, 197, 64 @ b, 12, 197, 64 = b, 12, 197, 197
        #-----------------------------------------------#
        score           = tf.matmul(query, key, transpose_b=True)
        #-----------------------------------------------#
        #   进行数量级的缩放
        #-----------------------------------------------#
        scaled_score    = score / tf.math.sqrt(tf.cast(self.projection_dim, score.dtype))
        #-----------------------------------------------#
        #   b, 12, 197, 197 -> b, 12, 197, 197
        #-----------------------------------------------#
        weights         = tf.nn.softmax(scaled_score, axis=-1)
        #-----------------------------------------------#
        #   b, 12, 197, 197 @ b, 12, 197, 64 = b, 12, 197, 64
        #-----------------------------------------------#
        value          = tf.matmul(weights, value)
        #-----------------------------------------------#
        #   b, 12, 197, 64 -> b, 197, 12, 64
        #-----------------------------------------------#
        value = tf.transpose(value, perm=[0, 2, 1, 3])
        #-----------------------------------------------#
        #   b, 197, 12, 64 -> b, 197, 768
        #-----------------------------------------------#
        output = tf.reshape(value, (tf.shape(value)[0], tf.shape(value)[1], -1))
        return output
def MultiHeadSelfAttention(inputs, num_features, num_heads, dropout, name):
    #-----------------------------------------------#
    #   qkv   b, 197, 768 -> b, 197, 3 * 768
    #-----------------------------------------------#
    qkv = Dense(int(num_features * 3), name = name + "qkv")(inputs)
    #-----------------------------------------------#
    #   b, 197, 3 * 768 -> b, 197, 768
    #-----------------------------------------------#
    x   = Attention(num_features, num_heads)(qkv)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768
    #-----------------------------------------------#
    x   = Dense(num_features, name = name + "proj")(x)
    x   = Dropout(dropout)(x)
    return x
def MLP(y, num_features, mlp_dim, dropout, name):
    y = Dense(mlp_dim, name = name + "fc1")(y)
    y = Gelu()(y)
    y = Dropout(dropout)(y)
    y = Dense(num_features, name = name + "fc2")(y)
    return y
def TransformerBlock(inputs, num_features, num_heads, mlp_dim, dropout, name):
    #-----------------------------------------------#
    #   施加层标准化
    #-----------------------------------------------#
    x = LayerNormalization(epsilon=1e-6, name = name + "norm1")(inputs)
    #-----------------------------------------------#
    #   施加多头注意力机制
    #-----------------------------------------------#
    x = MultiHeadSelfAttention(x, num_features, num_heads, dropout, name = name + "attn.")
    x = Dropout(dropout)(x)
    #-----------------------------------------------#
    #   施加残差结构
    #-----------------------------------------------#
    x = Add()([x, inputs])
    #-----------------------------------------------#
    #   施加层标准化
    #-----------------------------------------------#
    y = LayerNormalization(epsilon=1e-6, name = name + "norm2")(x)
    #-----------------------------------------------#
    #   施加两次全连接
    #-----------------------------------------------#
    y = MLP(y, num_features, mlp_dim, dropout, name = name + "mlp.")
    y = Dropout(dropout)(y)
    #-----------------------------------------------#
    #   施加残差结构
    #-----------------------------------------------#
    y = Add()([x, y])
    return y
def VisionTransformer(input_shape = [224, 224], patch_size = 16, num_layers = 12, num_features = 768, num_heads = 12, mlp_dim = 3072, 
            classes = 1000, dropout = 0.1):
    #-----------------------------------------------#
    #   224, 224, 3
    #-----------------------------------------------#
    inputs      = Input(shape = (input_shape[0], input_shape[1], 3))
    #-----------------------------------------------#
    #   224, 224, 3 -> 14, 14, 768
    #-----------------------------------------------#
    x           = Conv2D(num_features, patch_size, strides = patch_size, padding = "valid", name = "patch_embed.proj")(inputs)
    #-----------------------------------------------#
    #   14, 14, 768 -> 196, 768
    #-----------------------------------------------#
    x           = Reshape(((input_shape[0] // patch_size) * (input_shape[1] // patch_size), num_features))(x)
    #-----------------------------------------------#
    #   196, 768 -> 197, 768
    #-----------------------------------------------#
    x           = ClassToken(name="cls_token")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768
    #-----------------------------------------------#
    x           = AddPositionEmbs(input_shape, patch_size, name="pos_embed")(x)
    #-----------------------------------------------#
    #   197, 768 -> 197, 768  12次
    #-----------------------------------------------#
    for n in range(num_layers):
        x = TransformerBlock(
            x,
            num_features= num_features,
            num_heads   = num_heads,
            mlp_dim     = mlp_dim,
            dropout     = dropout,
            name        = "blocks." + str(n) + ".",
        )
    x = LayerNormalization(
        epsilon=1e-6, name="norm"
    )(x)
    x = Lambda(lambda v: v[:, 0], name="ExtractToken")(x)
    x = Dense(classes, name="head")(x)
    x = Softmax()(x)
    return keras.models.Model(inputs, x)

以上就是Keras实现Vision Transformer VIT模型示例详解的详细内容,更多关于Keras实现VIT模型的资料请关注脚本之家其它相关文章!

相关文章

  • python3.3实现乘法表示例

    python3.3实现乘法表示例

    这篇文章主要介绍了python3.3实现乘法表示例,需要的朋友可以参考下
    2014-02-02
  • Python基础之标准库和常用的第三方库案例教程

    Python基础之标准库和常用的第三方库案例教程

    这篇文章主要介绍了Python基础之标准库和常用的第三方库案例教程,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07
  • Python合并多个Excel数据的方法

    Python合并多个Excel数据的方法

    这篇文章主要介绍了Python合并多个Excel数据的方法也就是说将多个excel中的数据合并到另一个表中,本文通过实例代码相结合的形式给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友参考下吧
    2018-07-07
  • python 限制函数执行时间,自己实现timeout的实例

    python 限制函数执行时间,自己实现timeout的实例

    今天小编就为大家分享一篇python 限制函数执行时间,自己实现timeout的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 只用40行Python代码就能写出pdf转word小工具

    只用40行Python代码就能写出pdf转word小工具

    今天咱们介绍一个pdf转word的免费小工具,满足这么一个不常见但是偶尔会出来烦人的需求文中有非常详细的代码示例,对小伙伴们很有帮助,需要的朋友可以参考下
    2021-05-05
  • OpenCV-Python实现轮廓拟合

    OpenCV-Python实现轮廓拟合

    本文将结合实例代码,介绍OpenCV-Python实现轮廓拟合,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-06-06
  • Python实现手机号自动判断男女性别(实例解析)

    Python实现手机号自动判断男女性别(实例解析)

    这篇文章主要介绍了Python实现手机号自动判断男女性别,本文性别判断主要依靠airtest中的自动化测试实现,通过实例代码给大家讲解的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • 速记Python布尔值

    速记Python布尔值

    这篇文章主要介绍了速记Python布尔值,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • Python日志采集代码详解

    Python日志采集代码详解

    这篇文章主要介绍了Python日志采集,在实际使用python做自动化测试过程中两种解决思路都可以使用,且都挺方便,其中对于思路1,还可以将代码进行更进一步的封装,需要的朋友可以参考下
    2022-05-05
  • 通过cmd进入python的步骤

    通过cmd进入python的步骤

    在本篇文章里小编给大家整理了关于通过cmd进入python的步骤和实例,需要的朋友们可以参考下。
    2020-06-06

最新评论