利用Python绘制多种风玫瑰图

 更新时间:2022年05月08日 10:04:14   作者:蚂蚁ailing  
这篇文章主要介绍了利用Python绘制多种风玫瑰图,风玫瑰是由气象学家用于给出如何风速和风向在特定位置通常分布的简明视图的图形工具,下文绘制实现详情,需要的小伙伴可以参考一下

前言

风玫瑰是由气象学家用于给出如何风速和风向在特定位置通常分布的简明视图的图形工具。它也可以用来描述空气质量污染源。风玫瑰工具使用Matplotlib作为后端。

安装方式直接使用:

pip install windrose

导入模块

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.cm as cm
from math import pi
import windrose
from windrose import WindroseAxes, WindAxes, plot_windrose
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import cartopy.crs as ccrs
import cartopy.io.img_tiles as cimgt

读取数据

df = pd.read_csv("./sample_wind_poitiers.csv", parse_dates=['Timestamp'])
df = df.set_index('Timestamp')

计算风速的u、v分量

df['speed_x'] = df['speed'] * np.sin(df['direction'] * pi / 180.0)
df['speed_y'] = df['speed'] * np.cos(df['direction'] * pi / 180.0)

uv风速散点图(含透明度)

fig, ax = plt.subplots(figsize=(8, 8), dpi=80)
x0, x1 = ax.get_xlim()
y0, y1 = ax.get_ylim()
ax.set_aspect(abs(x1-x0)/abs(y1-y0))
ax.set_aspect('equal')
ax.scatter(df['speed_x'], df['speed_y'], alpha=0.25)
df.plot(kind='scatter', x='speed_x', y='speed_y', alpha=0.05, ax=ax)
Vw = 80
ax.set_xlim([-Vw, Vw])
ax.set_ylim([-Vw, Vw])

风玫瑰图(多种形式)

ax = WindroseAxes.from_ax()
ax.bar(df.direction.values, df.speed.values, bins=np.arange(0.01,10,1), cmap=cm.hot, lw=3)
ax.set_legend()

ax = WindroseAxes.from_ax()
ax.box(df.direction.values, df.speed.values, bins=np.arange(0.01,10,1), cmap=cm.hot, lw=3)
ax.set_legend()

plot_windrose(df, kind='contour', bins=np.arange(0.01,8,1), cmap=cm.hot, lw=3)

绘制特定月份风玫瑰图

def plot_month(df, t_year_month, *args, **kwargs):
    by = 'year_month'
    df[by] = df.index.map(lambda dt: (dt.year, dt.month))
    df_month = df[df[by] == t_year_month]
    ax = plot_windrose(df_month, *args, **kwargs)
    return ax
plot_month(df, (2014, 7), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)

plot_month(df, (2014, 8), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)

plot_month(df, (2014, 9), kind='contour', bins=np.arange(0, 10, 1), cmap=cm.hot)

绘制风速频率直方图

bins = np.arange(0,30+1,1)
bins = bins[1:]
plot_windrose(df, kind='pdf', bins=np.arange(0.01,30,1),normed=True)

在地图上绘制风玫瑰图

proj = ccrs.PlateCarree()
fig = plt.figure(figsize=(12, 6))
minlon, maxlon, minlat, maxlat = (6.5, 7.0, 45.85, 46.05)
main_ax = fig.add_subplot(1, 1, 1, projection=proj)
main_ax.set_extent([minlon, maxlon, minlat, maxlat], crs=proj)
main_ax.gridlines(draw_labels=True)
main_ax.add_wms(wms='http://vmap0.tiles.osgeo.org/wms/vmap0',layers=['basic'])
cham_lon, cham_lat = (6.8599, 45.9259)
passy_lon, passy_lat = (6.7, 45.9159)
wrax_cham = inset_axes(main_ax,
        width=1,
        height=1,
        loc='center',
        bbox_to_anchor=(cham_lon, cham_lat),
        bbox_transform=main_ax.transData,
        axes_class=windrose.WindroseAxes,

height_deg = 0.1
wrax_passy = inset_axes(main_ax,
        width="100%",
        height="100%",
        bbox_to_anchor=(passy_lon-height_deg/2, passy_lat-height_deg/2, height_deg, height_deg),
        bbox_transform=main_ax.transData,
        axes_class=windrose.WindroseAxes,
        )
wrax_cham.bar(df.direction.values, df.speed.values,bins=np.arange(0.01,10,1), lw=3)
wrax_passy.bar(df.direction.values, df.speed.values,bins=np.arange(0.01,10,1), lw=3)

for ax in [wrax_cham, wrax_passy]:
        ax.tick_params(labelleft=False, labelbottom=False)

最后:

这样绘制出来的风玫瑰看起来还是很漂亮的,并且也能够大大提高工作效率,对于那些科研人员是很有帮助的。代码以及图片效果就放在上面了。

相关文章

  • python中dict获取关键字与值的实现

    python中dict获取关键字与值的实现

    这篇文章主要介绍了python中dict获取关键字与值的实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • 关于微信小程序爬虫token自动更新问题

    关于微信小程序爬虫token自动更新问题

    本文主要介绍了关于微信小程序爬虫关于token自动更新问题,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-09-09
  • 详解python tkinter 图片插入问题

    详解python tkinter 图片插入问题

    这篇文章主要介绍了详解python tkinter 图片插入问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • python 应用之Pycharm 新建模板默认添加编码格式-作者-时间等信息【推荐】

    python 应用之Pycharm 新建模板默认添加编码格式-作者-时间等信息【推荐】

    这篇文章主要介绍了Pycharm 新建模板默认添加编码格式-作者-时间等信息 ,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-06-06
  • Mac中PyCharm配置Anaconda环境的方法

    Mac中PyCharm配置Anaconda环境的方法

    这篇文章主要介绍了Mac中PyCharm配置Anaconda环境的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • 带你学习Python如何实现回归树模型

    带你学习Python如何实现回归树模型

    这篇文章主要介绍了Python如何实现回归树模型,文中讲解非常细致,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • 基于python plotly交互式图表大全

    基于python plotly交互式图表大全

    今天小编就为大家分享一篇基于python plotly交互式图表大全,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 解决使用pycharm提交代码时冲突之后文件丢失找回的方法

    解决使用pycharm提交代码时冲突之后文件丢失找回的方法

    这篇文章主要介绍了解决使用pycharm提交代码时冲突之后文件丢失找回的方法 ,需要的朋友可以参考下
    2018-08-08
  • Pycharm学习教程(7)虚拟机VM的配置教程

    Pycharm学习教程(7)虚拟机VM的配置教程

    这篇文章主要为大家详细介绍了最全的Pycharm学习教程第七篇,Python快捷键相关设置,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-05-05
  • Python安装Gradio和常见安装问题解决办法

    Python安装Gradio和常见安装问题解决办法

    Gradio是一款便捷的Python库,专门用于创建机器学习模型的Web应用,安装通常简单,但偶尔会遇到依赖问题或环境配置错误,这篇文章主要介绍了Python安装Gradio和常见安装问题解决办法,需要的朋友可以参考下
    2024-10-10

最新评论