YOLOv5中SPP/SPPF结构源码详析(内含注释分析)

 更新时间:2022年05月10日 09:58:28   作者:tt丫  
其实关于YOLOv5的网络结构其实网上相关的讲解已经有很多了,但是觉着还是有必要再给大家介绍下,下面这篇文章主要给大家介绍了关于YOLOv5中SPP/SPPF结构源码的相关资料,需要的朋友可以参考下

一、SPP的应用的背景

在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢?

通常来说,我们有以下几种方法:

(1)对输入进行resize操作,让他们统统变成你设计的层的输入规格那样。但是这样过于暴力直接,可能会丢失很多信息或者多出很多不该有的信息(图片变形等),影响最终的结果。

(2)替换网络中的全连接层,对最后的卷积层使用global average pooling,全局平均池化只和通道数有关,而与特征图大小没有关系

(3)最后一个当然是我们要讲的SPP结构啦~

二、SPP结构分析

SPP结构又被称为空间金字塔池化,能将任意大小的特征图转换成固定大小的特征向量。

接下来我们来详述一下SPP是怎么处理滴~

输入层:首先我们现在有一张任意大小的图片,其大小为w * h。

输出层:21个神经元 -- 即我们待会希望提取到21个特征。

分析如下图所示:分别对1 * 1分块,2 * 2分块和4 * 4子图里分别取每一个框内的max值(即取蓝框框内的最大值),这一步就是作最大池化,这样最后提取出来的特征值(即取出来的最大值)一共有1 * 1 + 2 * 2 + 4 * 4 = 21个。得出的特征再concat在一起。

而在YOLOv5中SPP的结构图如下图所示:

其中,前后各多加一个CBL,中间的kernel size分别为1 * 1,5 * 5,9 * 9和13 * 13。

三、SPPF结构分析

(x,y1这些是啥请看下面的代码)

四、YOLOv5中SPP/SPPF结构源码解析(内含注释分析)

代码注释与上图的SPP结构相对应。

class SPP(nn.Module):
    def __init__(self, c1, c2, k=(5, 9, 13)):#这里5,9,13,就是初始化的kernel size
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)#这里对应第一个CBL
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)#这里对应SPP操作里的最后一个CBL
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        #这里对应SPP核心操作,对5 * 5分块,9 * 9分块和13 * 13子图分别取最大池化
 
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning忽略警告
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
            #torch.cat对应concat

SPPF结构

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
 
    def forward(self, x):
        x = self.cv1(x)#先通过CBL进行通道数的减半
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            #上述两次最大池化
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
            #将原来的x,一次池化后的y1,两次池化后的y2,3次池化的self.m(y2)先进行拼接,然后再CBL

总结

到此这篇关于YOLOv5中SPP/SPPF结构源码详析的文章就介绍到这了,更多相关YOLOv5 SPP/SPPF结构内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  •  Python列表的切片取值详解

     Python列表的切片取值详解

    这篇文章主要介绍了 Python列表的切片取值详解,文章通过围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-09-09
  • Python 将字符串转换为列表的7种方法汇总

    Python 将字符串转换为列表的7种方法汇总

    这篇文章主要介绍了Python 将字符串转换为列表的7种方法汇总,在本文中,我们将尝试将给定的字符串转换为列表,其中根据用户的选择,遇到空格或任何其他特殊字符,为此,我们在string中使用split()方法,需要的朋友可以参考下
    2023-11-11
  • Python实现PowerPoint演示文稿到图片的批量转换

    Python实现PowerPoint演示文稿到图片的批量转换

    PowerPoint演示文稿作为展示创意、分享知识和表达观点的重要工具,被广泛应用于教育、商务汇报及个人项目展示等领域,用Python代码可以高效地实现PowerPoint演示文稿到图片的批量转换,从而提升工作效率,文本将介绍如何使用Python实现PowerPoint演示文稿到图片的转换
    2024-06-06
  • 详解python中mongoengine库用法

    详解python中mongoengine库用法

    这篇文章主要介绍了python中mongoengine库用法,主要包括MongoDB的安装与连接过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • 在Tensorflow中实现leakyRelu操作详解(高效)

    在Tensorflow中实现leakyRelu操作详解(高效)

    这篇文章主要介绍了在Tensorflow中实现leakyRelu操作详解(高效),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python连接池实现示例程序

    python连接池实现示例程序

    这篇文章主要介绍了python连接池实现,大家参考使用
    2013-11-11
  • 基于Python实现绘制简单动图的示例详解

    基于Python实现绘制简单动图的示例详解

    动画是一种高效的可视化工具,能够提升用户的吸引力和视觉体验,有助于以富有意义的方式呈现数据可视化,本文的主要介绍在Python中两种简单制作动图的方法,需要的可以了解下
    2023-10-10
  • 抵御代码复杂性使python函数更加Pythonic技巧示例详解

    抵御代码复杂性使python函数更加Pythonic技巧示例详解

    这篇文章主要介绍了抵御代码复杂性使python函数更加Pythonic技巧示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • Python绘画好看的星空图

    Python绘画好看的星空图

    这篇文章主要介绍了Python绘画好看的星空图,文章内容介绍详细,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-03-03
  • Python详解如何动态给对象增加属性和方法

    Python详解如何动态给对象增加属性和方法

    python是动态语⾔,动态编程语⾔是⾼级程序设计语⾔的⼀个类别,在计算机科学领域已被⼴泛应⽤。它是⼀类在 运⾏时可以改变其结构 的语⾔ :例如新的函数、对象、甚⾄代码可以被引进,已有的函数可以被删除或是其他结构上的变化
    2022-07-07

最新评论