PyTorch搭建双向LSTM实现时间序列负荷预测

 更新时间:2022年05月11日 09:46:37   作者:Cyril_KI  
这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

I. 前言

前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。

系列文章:

PyTorch搭建LSTM实现多变量多步长时序负荷预测

PyTorch搭建LSTM实现多变量时序负荷预测

PyTorch深度学习LSTM从input输入到Linear输出

PyTorch搭建LSTM实现时间序列负荷预测

II. 原理

关于LSTM的输入输出在深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中已经有过详细叙述。

关于nn.LSTM的参数,官方文档给出的解释为:

总共有七个参数,其中只有前三个是必须的。由于大家普遍使用PyTorch的DataLoader来形成批量数据,因此batch_first也比较重要。LSTM的两个常见的应用场景为文本处理和时序预测,因此下面对每个参数我都会从这两个方面来进行具体解释。

  • input_size:在文本处理中,由于一个单词没法参与运算,因此我们得通过Word2Vec来对单词进行嵌入表示,将每一个单词表示成一个向量,此时input_size=embedding_size。
  • 比如每个句子中有五个单词,每个单词用一个100维向量来表示,那么这里input_size=100;
  • 在时间序列预测中,比如需要预测负荷,每一个负荷都是一个单独的值,都可以直接参与运算,因此并不需要将每一个负荷表示成一个向量,此时input_size=1。
  • 但如果我们使用多变量进行预测,比如我们利用前24小时每一时刻的[负荷、风速、温度、压强、湿度、天气、节假日信息]来预测下一时刻的负荷,那么此时input_size=7。
  • hidden_size:隐藏层节点个数。可以随意设置。
  • num_layers:层数。nn.LSTMCell与nn.LSTM相比,num_layers默认为1。
  • batch_first:默认为False,意义见后文。

Inputs

关于LSTM的输入,官方文档给出的定义为:

可以看到,输入由两部分组成:input、(初始的隐状态h_0,初始的单元状态c_0)​

其中input:

input(seq_len, batch_size, input_size)
  • seq_len:在文本处理中,如果一个句子有7个单词,则seq_len=7;在时间序列预测中,假设我们用前24个小时的负荷来预测下一时刻负荷,则seq_len=24。
  • batch_size:一次性输入LSTM中的样本个数。在文本处理中,可以一次性输入很多个句子;在时间序列预测中,也可以一次性输入很多条数据。
  • input_size:见前文。

(h_0, c_0):

h_0(num_directions * num_layers, batch_size, hidden_size)
c_0(num_directions * num_layers, batch_size, hidden_size)

h_0和c_0的shape一致。

  • num_directions:如果是双向LSTM,则num_directions=2;否则num_directions=1。
  • num_layers:见前文。
  • batch_size:见前文。
  • hidden_size:见前文。

Outputs

关于LSTM的输出,官方文档给出的定义为:

可以看到,输出也由两部分组成:otput、(隐状态h_n,单元状态c_n)

其中output的shape为:

output(seq_len, batch_size, num_directions * hidden_size)

h_n和c_n的shape保持不变,参数解释见前文。

batch_first

如果在初始化LSTM时令batch_first=True,那么input和output的shape将由:

input(seq_len, batch_size, input_size)
output(seq_len, batch_size, num_directions * hidden_size)

变为:

input(batch_size, seq_len, input_size)
output(batch_size, seq_len, num_directions * hidden_size)

即batch_size提前。

输出提取

假设最后我们得到了output(batch_size, seq_len, 2 * hidden_size),我们需要将其输入到线性层,有以下两种方法可以参考:

(1)直接输入

和单向一样,我们可以将output直接输入到Linear。在单向LSTM中:

self.linear = nn.Linear(self.hidden_size, self.output_size)

而在双向LSTM中:

self.linear = nn.Linear(2 * self.hidden_size, self.output_size)

模型:

class BiLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 2
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=True)
        self.linear = nn.Linear(self.num_directions * self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # print(input_seq.size())
        seq_len = input_seq.shape[1]
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, self.input_size)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0))
        # print(self.batch_size * seq_len, self.hidden_size)
        output = output.contiguous().view(self.batch_size * seq_len, self.num_directions * self.hidden_size)  # (5 * 30, 64)
        pred = self.linear(output)  # pred()
        pred = pred.view(self.batch_size, seq_len, -1)
        pred = pred[:, -1, :]
        return pred

(2)处理后再输入

在LSTM中,经过线性层后的output的shape为(batch_size, seq_len, output_size)。假设我们用前24个小时(1 to 24)预测后2个小时的负荷(25 to 26),那么seq_len=24, output_size=2。根据LSTM的原理,最终的输出中包含了所有位置的预测值,也就是((2 3), (3 4), (4 5)…(25 26))。很显然我们只需要最后一个预测值,即output[:, -1, :]。

而在双向LSTM中,一开始output(batch_size, seq_len, 2 * hidden_size),这里面包含了所有位置的两个方向的输出。简单来说,output[0]为序列从左往右第一个隐藏层状态输出和序列从右往左最后一个隐藏层状态输出的拼接;output[-1]为序列从左往右最后一个隐藏层状态输出和序列从右往左第一个隐藏层状态输出的拼接。

如果我们想要同时利用前向和后向的输出,我们可以将它们从中间切割,然后求平均。比如output的shape为(30, 24, 2 * 64),我们将其变成(30, 24, 2, 64),然后在dim=2上求平均,得到一个shape为(30, 24, 64)的输出,此时就与单向LSTM的输出一致了。

具体处理方法:

output = output.contiguous().view(self.batch_size, seq_len, self.num_directions, self.hidden_size)
output = torch.mean(output, dim=2)

模型代码:

class BiLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 2
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # print(input_seq.size())
        seq_len = input_seq.shape[1]
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, self.input_size)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0))
        output = output.contiguous().view(self.batch_size, seq_len, self.num_directions, self.hidden_size)
        output = torch.mean(output, dim=2)
        pred = self.linear(output)
        # print('pred=', pred.shape)
        pred = pred.view(self.batch_size, seq_len, -1)
        pred = pred[:, -1, :]
        return pred

III. 训练和预测

数据处理、训练以及预测同前面几篇文章。

这里对单步长多变量的预测进行对比,在其他条件保持一致的情况下,得到的实验结果如下所示:

方法LSTMBiLSTM(1)BiLSTM(2)MAPE7.439.299.29

可以看到,仅针对我所使用的数据而言,单向LSTM的效果更好。对于前面提到的两种方法,貌似差异不大。

IV. 源码及数据

源码及数据我放在了GitHub上,LSTM-Load-Forecasting

以上就是PyTorch搭建双向LSTM实现时间序列负荷预测的详细内容,更多关于双向LSTM时序负荷预测的资料请关注脚本之家其它相关文章!

相关文章

  • Python操作mongodb的9个步骤

    Python操作mongodb的9个步骤

    本篇文章给大家详细分享了Python操作mongodb的详细步骤以及实例代码,有需要的朋友参考学习下吧。
    2018-06-06
  • Python Sleep休眠函数使用简单实例

    Python Sleep休眠函数使用简单实例

    这篇文章主要介绍了Python Sleep休眠函数使用简单实例,本文直接给出两个实现例子,需要的朋友可以参考下
    2015-02-02
  • python中hashlib模块用法示例

    python中hashlib模块用法示例

    这篇文章主要介绍了python中hashlib模块用法示例,具有一定参考价值,需要的朋友可以了解下。
    2017-10-10
  • pycharm配置anaconda环境时找不到python.exe的两种解决办法

    pycharm配置anaconda环境时找不到python.exe的两种解决办法

    如果你在Anaconda中创建了虚拟环境,但是无法找到python.exe,可能是因为虚拟环境的Python路径没有添加到系统环境变量中,这篇文章主要给大家介绍了关于pycharm配置anaconda环境时找不到python.exe的两种解决办法,需要的朋友可以参考下
    2024-07-07
  • Python实现微信小程序自动操作工具

    Python实现微信小程序自动操作工具

    这篇文章主要为大家详细介绍了如何利用Python实现微信小程序自动化操作的小工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-01-01
  • python入门之Tkinter使用的方法详解

    python入门之Tkinter使用的方法详解

    作为Python开发者,图形用户界面(GUI)开发是必备技能之一,本文将介绍Python自带的GUI工具包TKinter,这篇文章主要给大家介绍了关于python入门之Tkinter使用的相关资料,需要的朋友可以参考下
    2022-03-03
  • 关于Python 位运算防坑指南

    关于Python 位运算防坑指南

    这篇文章主要介绍了关于Python 位运算防坑指南,小编将剧烈向大家说明并且列举python及C#两种语言,需要的朋友可以参考下面文章的具体内容
    2021-09-09
  • Python爬虫信息输入及页面的切换方法

    Python爬虫信息输入及页面的切换方法

    今天小编就为大家分享一篇Python爬虫信息输入及页面的切换方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python中list的交、并、差集获取方法示例

    Python中list的交、并、差集获取方法示例

    这篇文章主要介绍了Python中list的交、并、差集获取方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • 浅谈Python]程序的分支结构

    浅谈Python]程序的分支结构

    这篇文章主要介绍了浅谈Python]程序的分支结构,语句块是 if 条件满足后执行的一个或多个语句序列,语句块中语句通过与 if 所在行形成缩进表达包含关系,需要的朋友可以参考下
    2023-04-04

最新评论