Python3 DataFrame缺失值的处理方法

 更新时间:2022年05月12日 14:13:22   作者:古月财经之月光宝盒  
这篇文章主要介绍了Python3 DataFrame缺失值的处理,包括缺失值的判断缺失值数据的过滤及缺失值数据的填充,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

一、缺失值的判断

在通过Pandas做数据分析时,数据中往往会因为一些原因而出现缺失值NaN (Nota number)o比如前文中的例子,当两个DataFrame对象进行简单运算时,无法匹配的位置会出现缺失值NaN或者None.

isnull ( )和notnull ( )方法都可以用于判断数据是否为缺失值( NaN或者None).如果是缺失值,则isnull()返回值为True, notnull()返回值为False.

df2
Out[170]: 
      A     B     C   D
a   2.0   4.0   6.0 NaN
b   6.0   8.0  10.0 NaN
c  10.0  12.0  14.0 NaN
 
df2.isnull()
Out[171]: 
       A      B      C     D
a  False  False  False  True
b  False  False  False  True
c  False  False  False  True
 
df2.notnull()
Out[172]: 
      A     B     C      D
a  True  True  True  False
b  True  True  True  False
c  True  True  True  False

二、缺失值数据的过滤

有时遇到包含缺失值的数据处理起来比较简单,只需要保留有数值的数据即可:

df2
Out[182]: 
      A     B     C    D
a   2.0   4.0   6.0  NaN
b   6.0   8.0  10.0  NaN
c  10.0  12.0  14.0  1.0
 
#把D列中的缺失值过滤掉
df2.D[df2.D.notnull()]
Out[183]: 
c    1.0
Name: D, dtype: float64

三、缺失值数据的填充

有时处理数据时我们会想将缺失值用实际的值做替代,Pandas包里也有函数可以调 用:DataFrame.fillna(value=None, method = None, axis = None, inplace=False, limit=None)

参数value是在缺失值处填充的值,可以是数值数字,也可以是字符串;method 是填充的方式,默认为None,也可以取值为ffin、pad、bfill或backfill,其中ffill/pad是用行或列方向上的上一个观测值来填充缺失值,bfill/backfin是用行或列方向上的下一个观测 值来填充;axis与method配合使用,指定行(axis=l)或列(axis=0)的方向;limit=None 时,会填充连续的缺失值,如果指定数值的话,比如limit=2,只会依次填充连续NaN值的 指定数字个数(比如2个);若inplace=False则不会变更原DataFrame,若inplace=True, 则会改变原DataFrame。

import pandas as pd
import numpy as np
h2h2df=pd.DataFrame(np.arange(1,21).reshape(5,4),index=list('abcde'),columns=list("ABCD"))
h2df.loc['c','A']=np.nan
h2df.loc['b':'d','C']=np.nan
h2df
Out[192]: 
      A   B     C   D
a   1.0   2   3.0   4
b   5.0   6   NaN   8
c   NaN  10   NaN  12
d  13.0  14   NaN  16
e  17.0  18  19.0  20
h2df.fillna(0)
Out[193]: 
      A   B     C   D
a   1.0   2   3.0   4
b   5.0   6   0.0   8
c   0.0  10   0.0  12
d  13.0  14   0.0  16
e  17.0  18  19.0  20
h2df.fillna(method='ffill')
Out[194]: 
      A   B     C   D
a   1.0   2   3.0   4
b   5.0   6   3.0   8
c   5.0  10   3.0  12
d  13.0  14   3.0  16
e  17.0  18  19.0  20
h2df.fillna(method='pad')
Out[197]: 
      A   B     C   D
a   1.0   2   3.0   4
b   5.0   6   3.0   8
c   5.0  10   3.0  12
d  13.0  14   3.0  16
e  17.0  18  19.0  20
h2df.fillna(method='backfill',axis=1)
Out[196]: 
      A     B     C     D
a   1.0   2.0   3.0   4.0
b   5.0   6.0   8.0   8.0
c  10.0  10.0  12.0  12.0
d  13.0  14.0  16.0  16.0
e  17.0  18.0  19.0  20.0
h2df.fillna(method='ffill',limit=2)
Out[198]: 
      A   B     C   D
a   1.0   2   3.0   4
b   5.0   6   3.0   8
c   5.0  10   3.0  12
d  13.0  14   NaN  16
e  17.0  18  19.0  20

四、缺失值的删除

Pandas提供对包含缺失值的数据集进行行列的删除操作:

DataFrame.dropna(axis=0, how=‘any’, thresh=None) 

axis = 0指删除包含缺失值的行,axis = 1指删除包含缺失值的列,默认为0; how=any表示只要有一个缺失值就删除该行(列),how = all表示只有当所有的元素都为缺失值时才删除该行(列),how默认取值为any;thresh默认为None。当thresh=5时表示只有当某行(列)缺失值的数量大于或者等于5时删除该 行(列)。

df
Out[199]: 
      A   B     C   D
a   1.0   2   3.0   4
b   5.0   6   NaN   8
c   NaN  10   NaN  12
d  13.0  14   NaN  16
e  17.0  18  19.0  20
 
df.dropna(axis=0)
Out[200]: 
      A   B     C   D
a   1.0   2   3.0   4
e  17.0  18  19.0  20
 
df.dropna(axis=1)
Out[201]: 
    B   D
a   2   4
b   6   8
c  10  12
d  14  16
e  18  20

到此这篇关于Python3 DataFrame缺失值的处理的文章就介绍到这了,更多相关Python3 DataFrame缺失值内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python制作摩斯密码翻译器

    Python制作摩斯密码翻译器

    摩斯密码是一种将文本信息作为一系列通断的音调、灯光或咔嗒声传输的方法,本文将介绍如何通过Python制作摩斯密码翻译器,感兴趣的童鞋可以关注一下
    2021-11-11
  • Python常见异常处理总结

    Python常见异常处理总结

    这篇文章主要介绍了Python常见异常处理总结,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
    2022-07-07
  • python如何利用中心坐标绘制矩形

    python如何利用中心坐标绘制矩形

    这篇文章主要介绍了python如何利用中心坐标绘制矩形问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Pandas修改DataFrame列名的两种方法实例

    Pandas修改DataFrame列名的两种方法实例

    这篇文章主要给大家介绍了关于Pandas修改DataFrame列名的两种方法,文中通过实例代码介绍的非常详细,对大家学习或者使用Pandas具有一定的参考学习价值,需要的朋友可以参考下
    2022-03-03
  • python自动化测试之破解图文验证码

    python自动化测试之破解图文验证码

    这篇文章介绍了python自动化测试之破解图文验证码的解决方案,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • Mac版Python3安装/升级的方式

    Mac版Python3安装/升级的方式

    这篇文章主要介绍了Mac版Python3安装/升级的方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-03-03
  • Python实现保证只能运行一个脚本实例

    Python实现保证只能运行一个脚本实例

    这篇文章主要介绍了Python实现保证只能运行一个脚本实例,本文直接给出实现代码,需要的朋友可以参考下
    2015-06-06
  • keras 两种训练模型方式详解fit和fit_generator(节省内存)

    keras 两种训练模型方式详解fit和fit_generator(节省内存)

    这篇文章主要介绍了keras 两种训练模型方式详解fit和fit_generator(节省内存),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • 在vscode中启动conda虚拟环境的思路详解

    在vscode中启动conda虚拟环境的思路详解

    这篇文章主要介绍了在vscode中启动conda虚拟环境的思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Python中getpass模块无回显输入源码解析

    Python中getpass模块无回显输入源码解析

    这篇文章主要介绍了Python中getpass模块无回显输入源码解析,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01

最新评论