图解AVL树数据结构输入与输出及实现示例

 更新时间:2022年05月13日 12:25:01   作者:水目沾  
这篇文章主要为大家介绍了C++图解AVL树数据结构输入与输出操作示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

AVL树(平衡二叉树):

AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树。下面是平衡二叉树和非平衡二叉树对比的例图:

平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1;

AVL树的作用:

我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度(O(log2n))同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。

例如:我们按顺序将一组数据1,2,3,4,5,6分别插入到一颗空二叉查找树和AVL树中,插入的结果如下图:

由上图可知,同样的结点,由于插入方式不同导致树的高度也有所不同。特别是在带插入结点个数很多且正序的情况下,会导致二叉树的高度是O(N),而AVL树就不会出现这种情况,树的高度始终是O(lgN).高度越小,对树的一些基本操作的时间复杂度就会越小。这也就是我们引入AVL树的原因

AVL树的基本操作:

AVL树的操作基本和二叉查找树一样,这里我们关注的是两个变化很大的操作:插入和删除!

我们知道,AVL树不仅是一颗二叉查找树,它还有其他的性质。如果我们按照一般的二叉查找树的插入方式可能会破坏AVL树的平衡性。同理,在删除的时候也有可能会破坏树的平衡性,所以我们要做一些特殊的处理,包括:单旋转和双旋转!

AVL树的插入,单旋转的第一种情况---右旋:

由上图可知:在插入之前树是一颗AVL树,而插入之后结点T的左右子树高度差的绝对值不再 < 1,此时AVL树的平衡性被破坏,我们要对其进行旋转。由上图可知我们是在结点T的左结点的左子树上做了插入元素的操作,我们称这种情况为左左情况,我们应该进行右旋转(只需旋转一次,故是单旋转)。具体旋转步骤是:

T向右旋转成为L的右结点,同时,Y放到T的左孩子上。这样即可得到一颗新的AVL树,旋转过程图如下:

左左情况的右旋举例:

AVL树的插入,单旋转的第二种情况---左旋:

由上图可知:在插入之前树是一颗AVL树,而插入之后结点T的左右子树高度差的绝对值不再 < 1,此时AVL树的平衡性被破坏,我们要对其进行旋转。由上图可知我们是在结点T的右结点的右子树上做了插入元素的操作,我们称这种情况为右右情况,我们应该进行左旋转(只需旋转一次,故事单旋转)。具体旋转步骤是:

T向右旋转成为R的左结点,同时,Y放到T的左孩子上。这样即可得到一颗新的AVL树,旋转过程图如下:

右右情况的左旋举例:

以上就是插入操作时的单旋转情况!我们要注意的是:谁是T谁是L,谁是R还有谁是X,Y,Z!T始终是开始不平衡的左右子树的根节点。显然L是T的左结点,R是T的右节点。X、Y、Y是子树当然也可以为NULL.NULL归NULL,但不能破坏插入时我上面所说的左左情况或者右右情况。

AVL树的插入,双旋转的第一种情况---左右(先左后右)旋:

由上图可知,我们在T结点的左结点的右子树上插入一个元素时,会使得根为T的树的左右子树高度差的绝对值不再 < 1,如果只是进行简单的右旋,得到的树仍然是不平衡的。我们应该按照如下图所示进行二次旋转:

左右情况的左右旋转实例:

AVL树的插入,双旋转的第二种情况---右左(先右后左)旋:

由上图可知,我们在T结点的右结点的左子树上插入一个元素时,会使得根为T的树的左右子树高度差的绝对值不再 < 1,如果只是进行简单的左旋,得到的树仍然是不平衡的。我们应该按照如下图所示进行二次旋转:

右左情况的右左旋转实例:

AVL树的插入代码实现:(仅供参考)

懂了以上单旋转和双旋转的原理之后,那么代码写起来也就比较简单了,以下是我写的代码,如果有错还望大家不吝指正。(参考数据结构与算法分析

#include <iostream>
using namespace std;
#define DataType int
/*
    定义AVL树的结构体,链式
*/
typedef struct AvlNode{
    DataType    data;
    AvlNode    * m_pLeft;
    AvlNode    * m_pRight;
    int height;
}*AvlTree,*Position,AvlNode;
//求两个数的最大值
int Max(int a,int b)
{
    return a>b?a:b;
}
//求树的高度
int Height( AvlTree T)
{
    if(NULL == T)
        return -1;
    else
        return T->height;
}
//单旋转右旋
AvlTree singleRotateWithRight(AvlTree T)
{
    AvlTree L = T->m_pLeft;
    T->m_pLeft = L->m_pRight;
    L->m_pRight = T;
    T->height = Max( Height(T->m_pLeft),Height(T->m_pRight) ) + 1;
    L->height = Max( Height(L->m_pLeft),Height(L->m_pRight) ) + 1;
    return L;    //此时L成为根节点了(可参考AVL的插入的左左情况的右旋图)
}
//单旋转左旋
AvlTree singleRotateWithLeft(AvlTree T)
{
    AvlTree R = T->m_pRight;
    T->m_pRight = R->m_pLeft;
    R->m_pLeft = T;
    T->height = Max( Height(T->m_pLeft),Height(T->m_pRight) ) + 1;
    R->height = Max( Height(R->m_pLeft),Height(R->m_pRight) ) + 1;
    return R;    //此时R成为根节点了(可参考AVL的插入的左左情况的左旋图)
}
//双旋转,先左后右
AvlTree doubleRotateWithLeft(AvlTree T)        //先左后右
{
    T->m_pLeft = singleRotateWithLeft(T->m_pLeft);
    return singleRotateWithRight(T);
}
//双旋转,先右后左
AvlTree doubleRotateWithRight(AvlTree T)    //先右后左
{
    T->m_pRight = singleRotateWithRight(T->m_pRight);
    return singleRotateWithLeft(T);
}
AvlTree AvlTreeInsert(AvlTree T, DataType x)
{
    if(T == NULL)    //如果树为空
    {
        T = (AvlNode *)malloc(sizeof(struct AvlNode));
        if(T)
        {
            T->data = x;
            T->m_pLeft    = NULL;
            T->m_pRight = NULL;
            T->height = 0;
        }
        else
        {
            cout << "空间不够" << endl;
            exit(0);
        }
    }
    else if( x < T->data)        //如果插入到T结点的左子树上
    {
        T->m_pLeft = AvlTreeInsert(T->m_pLeft,x);    //先插入,后旋转
        if(Height(T->m_pLeft) - Height(T->m_pRight) == 2) //只有可能是这个
        {
            if(x < T->m_pLeft->data)        //左左情况,只需要右旋转
            {
                T = singleRotateWithRight( T );
            }
            else                            //左右情况,双旋转,先左
            {
                T = doubleRotateWithLeft( T );
            }
        }
    }
    else if( x > T->data )
    {
        T->m_pRight = AvlTreeInsert(T->m_pRight,x);
        if(Height(T->m_pRight) - Height(T->m_pLeft) == 2)
        {
            if(x > T->m_pRight->data)        //右右情况,进行左旋
            {
                T = singleRotateWithLeft( T );
            }
            else                            //左右情况,双旋转,先右
            {
                T = doubleRotateWithRight( T );
            }
        }
    }
    //如果这个数已经存在,那么不进行插入
    T->height = Max(Height(T->m_pLeft),Height(T->m_pRight)) + 1;
    return T;
}
//递归实现中序遍历
void inOrderVisitUseRecur(const AvlTree pCurrent)
{
    if(pCurrent)
    {
        inOrderVisitUseRecur(pCurrent->m_pLeft);
        cout << pCurrent->data << " ";
        if(pCurrent->m_pLeft)
            cout << " leftChild: "<<pCurrent->m_pLeft->data;
        else
            cout << " leftChild: "<<"NULL" ;
        if(pCurrent->m_pRight)
            cout << " rightChild: "<<pCurrent->m_pRight->data;
        else
            cout << " rightChild: "<< "NULL";
        cout << endl;
        inOrderVisitUseRecur(pCurrent->m_pRight);
    }
}
int main()
{
    AvlTree root = NULL;
    root = AvlTreeInsert(root,1);
    root = AvlTreeInsert(root,2);
    root = AvlTreeInsert(root,3);
    root = AvlTreeInsert(root,4);
    root = AvlTreeInsert(root,5);
    root = AvlTreeInsert(root,6);
    root = AvlTreeInsert(root,7);
    root = AvlTreeInsert(root,8);
    root = AvlTreeInsert(root,9);
    root = AvlTreeInsert(root,10);
    root = AvlTreeInsert(root,11);
    root = AvlTreeInsert(root,12);
    root = AvlTreeInsert(root,13);
    root = AvlTreeInsert(root,14);
    root = AvlTreeInsert(root,15);
    inOrderVisitUseRecur(root);
    return 0;
}

以上就是图解AVL树数据结构输入与输出及实现示例的详细内容,更多关于AVL树数据结构图解的资料请关注脚本之家其它相关文章!

相关文章

  • C语言字符串大小比较

    C语言字符串大小比较

    本文给大家分享给大家的是C语言的字符串大小比较的函数,有需要的小伙伴可以参考下。
    2015-07-07
  • c++11多线程编程之std::async的介绍与实例

    c++11多线程编程之std::async的介绍与实例

    这篇文章主要给大家介绍了关于c++11多线程编程之std::async的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • C语言程序环境和预处理详解分析

    C语言程序环境和预处理详解分析

    大家有没有想过,在vs2019的编译器上只要按下Ctrl+F5,一个test.c的源程序就能变成一个.exe的可执行程序,这其中是如何通过编译产生的呢,本章就和大家一起把其中的知识和重点的预处理一起学习一下
    2022-03-03
  • C++实现大数相乘算法

    C++实现大数相乘算法

    这篇文章主要为大家详细介绍了C++实现大数相乘算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-09-09
  • C语言折半查找法的由来及使用详解

    C语言折半查找法的由来及使用详解

    折半查找法也叫做⼆分查找,顾名思义就是把数据分成两半,再判断所查找的key在哪⼀半中,再重复上述步骤知道找到⽬标key,下面这篇文章主要给大家介绍了关于C语言折半查找法的相关资料,需要的朋友可以参考下
    2022-08-08
  • 一文详解Qt中的对象树机制

    一文详解Qt中的对象树机制

    Qt提供了对象树机制,能够自动、有效的组织和管理继承自QObject的Qt对象。这篇文章将通过一些示例为大家介绍一下Qt中对象树机制的使用,需要的可以参考一下
    2023-03-03
  • 使用CMake构建一个简单的C++项目的实现

    使用CMake构建一个简单的C++项目的实现

    CMake是一个跨平台的自动化构建工具,可以用于构建各种类型的项目,本文主要介绍了使用CMake构建一个简单的C++项目,具有一定的参考价值,感兴趣的可以了解一下
    2023-10-10
  • C语言goto语句简单使用详解

    C语言goto语句简单使用详解

    C语言中提供了可以随意滥用的 goto语句和标记跳转的标号,本文主要介绍了C语言goto语句简单使用详解,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • 你知道如何自定义sort函数中的比较函数

    你知道如何自定义sort函数中的比较函数

    这篇文章主要介绍了如何自定义sort函数中的比较函数,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-12-12
  • Qt编写地图实现闪烁点图的示例代码

    Qt编写地图实现闪烁点图的示例代码

    闪烁点图的核心有三个要素,城市的名称、城市的经纬度、对应值的大小,当值越大闪烁点也就越大,本文就来实现一下地图闪烁点图,具有一定的参考价值,感兴趣的可以了解一下
    2021-12-12

最新评论