Java实现拓扑排序的示例代码

 更新时间:2022年05月16日 10:49:12   作者:Carol  
这篇文章我们要讲的是拓扑排序,这是一个针对有向无环图的算法,主要是为了解决前驱后继的关系,感兴趣的小伙伴可以跟随小编一起学习一下

铺垫

有向图:我们这节要讲的算法涉及到有向图,所以我先把有向图的一些概念说一下,文章后面就不做解释啦。首先有向图节点与节点之间是用带箭头的线连接起来的。节点有出度和入度的概念,连线尾部指向的节点出度加1,连线头部,也就是箭头指向的节点入度加1。看下面这个例子,A的入度为0,出度为2,B的入度为1,出度为1,C的入度为1,出度为1,D的入度为2,出度为0。

图片

邻接表:邻接表是存储图结构的一种有效方式,如下图所示,左边节点数组存储图中所有节点,右侧邻接表存储节点的相邻节点。

图片

简介

这篇文章我们要讲的是拓扑排序,这是一个针对有向无环图的算法,主要是为了解决前驱后继的关系,即我们在完成当前事项的时候需要先完成什么事项,其实这在我们流程控制里面用的挺多的。看下面这个图,我们需要先完成A事项,然后才能去完成B,C事项,B,C事项的属于并列的,没有先后顺序,但是对于D事项需要在B,C事项完成之后才能进行。而拓扑排序能够帮助我们找到这个完成事项的合理顺序,同时我们看上面这个例子,A事项完成之后,B,C事项是没有先后顺序的,不管是先完成B还是C都符合条件,所以拓扑排序的顺序序列不是完全一定的。

工作过程

首先拓扑排序对应操作的是一个有向无环图。无环图,则肯定存在至少一个结点入度为0。在当前情况下,我们需要查找入度为0的节点进行操作,入度为0,表示当前节点没有前驱节点,或者前驱节点已经处理,可以直接操作。操作完毕之后,将当前节点的后继节点入度全部减1,再次查找入度节点为0的节点进行操作,此后就是一个递归过程,不断处理当前情况下入度为0的节点,直至所有节点处理完毕。

图片

数据结构

有向图结构如下,其中node存储当前图中包含的所有节点,adj存储对应下标节点的邻接点。初始化图时候,我们需要初始化图中节点个数,存储节点的数组以及节点对应邻接数组。同时提供一个addEdge方法,用于在两个节点直接加边,其实就是将后继节点放入前驱节点的邻接表中。

public static class Graph{
       /**
        * 节点个数
        */
       private Integer nodeSize;
       /**
        * 节点
        */
       private char[] node;
       /**
        * 邻接表
        */
       private LinkedList[] adj;

       public Graph(char[] node) {
           this.nodeSize = node.length;
           this.node = node;
           this.adj = new LinkedList[nodeSize];
           for (int i = 0 ; i < adj.length ; i++) {
               adj[i] = new LinkedList();
          }
      }
       /**
        * 在节点之间加边,前驱节点指向后继节点
        * @param front 前驱节点所在下标
        * @param end 后继节点所在下标
        */
       public void addEdge(int front, int end) {
           adj[front].add(end);
      }
  }

拓扑排序

拓扑排序首先初始化了两个临时数组,一个队列,一个inDegree数组存储对应下标节点的入度,因为每次访问的节点需要前驱节点已经完成,即入度为0,有了这个数组我们就可以比较快速的找到这些节点;另一个是visited数组,标志当前节点是否已经访问过,防止多次访问;一个nodes队列则保存在目前情况下所有入度为0的节点。(注意,为了存取方便,我们都是存储的节点下标 step1:初始化inDegree数组,visited数组; step2:遍历inDegree数组,将所有入度为0的节点入nodes队列; step3:依次将节点node出队; 根据visited判断当前node是否已经被访问,是,返回step3,否,进行下一步; 将当前节点的邻接节点入度-1,判断邻接节点入度是否为0,为0直接放入nodes队列,不为0返回step3;

/**
    * @param graph 有向无环图
    * @return 拓扑排序结果
    */
   public List<Character> toPoLogicalSort(Graph graph) {
       //用一个数组标志所有节点入度
       int[] inDegree = new int[graph.nodeSize];
       for (LinkedList list : graph.adj) {
           for (Object index : list) {
               ++ inDegree[(int)index];
          }
      }
       //用一个数组标志所有节点是否已经被访问
       boolean[] visited = new boolean[graph.nodeSize];
       //开始进行遍历
       Deque<Integer> nodes = new LinkedList<>();
       //将入度为0节点入队
       for (int i = 0 ; i < graph.nodeSize; i++) {
           if (inDegree[i] == 0) {
               nodes.offer(i);
          }
      }
       List<Character> result = new ArrayList<>();
       //将入度为0节点一次出队处理
       while (!nodes.isEmpty()) {
           int node = nodes.poll();
           if (visited[node]) {
               continue;
          }
           visited[node] = true;
           result.add(graph.node[node]);
           //将当前node的邻接节点入度-1;
           for (Object list : graph.adj[node]) {
               -- inDegree[(int)list];
               if (inDegree[(int)list] == 0) {
                   //前驱节点全部访问完毕,入度为0
                   nodes.offer((int) list);
              }
          }
      }
       return result;
  }

测试样例1

public static void main(String[] args) {
       ToPoLogicalSort toPoLogicalSort = new ToPoLogicalSort();
       //初始化一个图
       Graph graph = new Graph(new char[]{'A', 'B', 'C', 'D'});
       graph.addEdge(0, 1);
       graph.addEdge(0,2);
       graph.addEdge(1,3);
       graph.addEdge(2,3);
       List<Character> result = toPoLogicalSort.toPoLogicalSort(graph);
  }

执行结果

图片

测试样例2

public static void main(String[] args) {
       ToPoLogicalSort toPoLogicalSort = new ToPoLogicalSort();
       //初始化一个图
       Graph graph = new Graph(new char[]{'A', 'B', 'C', 'D','E','F','G','H'});
       graph.addEdge(0, 1);
       graph.addEdge(0,2);
       graph.addEdge(0,3);
       graph.addEdge(1,4);
       graph.addEdge(2,4);
       graph.addEdge(3,4);
       graph.addEdge(4,7);
       graph.addEdge(4,6);
       graph.addEdge(7,5);
       graph.addEdge(6,7);
       List<Character> result = toPoLogicalSort.toPoLogicalSort(graph);
  }

执行结果

图片

总结

我在上面有说到,拓扑排序可以用来判断图是否存在环,其实判断方式很简单,实现步骤与上面一致,只是我们最后判断一下出队的元素个数是否等于图的节点个数,如果等于,证明图无环,如果不等于则证明存在环。

到此这篇关于Java实现拓扑排序的示例代码的文章就介绍到这了,更多相关Java拓扑排序内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Java单例模式的6种实现方式详解

    Java单例模式的6种实现方式详解

    这篇文章主要介绍了Java单例模式的6种实现方式的相关资料,需要的朋友可以参考下,希望能够给你带来帮助
    2021-09-09
  • java中继承测试代码分析

    java中继承测试代码分析

    这篇文章主要介绍了java中继承测试代码分析,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Java使用Collections.sort()排序的方法

    Java使用Collections.sort()排序的方法

    这篇文章介绍了Java使用Collections.sort()排序的方法,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-12-12
  • Java Lock接口实现原理及实例解析

    Java Lock接口实现原理及实例解析

    这篇文章主要介绍了Java Lock接口实现原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-04-04
  • 深入理解Java8新特性之Stream API的终止操作步骤

    深入理解Java8新特性之Stream API的终止操作步骤

    Stream是Java8的一大亮点,是对容器对象功能的增强,它专注于对容器对象进行各种非常便利、高效的 聚合操作(aggregate operation)或者大批量数据操作。Stream API借助于同样新出现的Lambda表达式,极大的提高编程效率和程序可读性,感兴趣的朋友快来看看吧
    2021-11-11
  • SpringSecurity自定义Form表单使用方法讲解

    SpringSecurity自定义Form表单使用方法讲解

    这篇文章主要介绍了Spring Security自定义Form表单使用方法,虽然 Spring Security 提供了默认的登录表单,实际项目里肯定是不可以直接使用的,当然 Spring Security 也提供了自定义登录表单的功能
    2023-01-01
  • java中BigDecimal的操作方法

    java中BigDecimal的操作方法

    这篇文章主要介绍了java中BigDecimal的操作方法,较为详细的分析了BigDecimal类在进行商业计算时的应用方法,精度以及注意事项等问题,需要的朋友可以参考下
    2014-12-12
  • 浅谈Java编程中的synthetic关键字

    浅谈Java编程中的synthetic关键字

    这篇文章主要介绍了浅谈Java编程中的synthetic关键字的相关内容,包括其简单的介绍和实例,需要的朋友可以了解下。
    2017-09-09
  • Spring Cloud与分布式系统简析

    Spring Cloud与分布式系统简析

    这篇文章主要介绍了Spring Cloud与分布式系统的相关内容,具有一定参考价值,需要的朋友可以了解下。
    2017-09-09
  • SpringBoot实现动态定时任务的示例代码

    SpringBoot实现动态定时任务的示例代码

    在SpringBoot项目中简单使用定时任务,不过由于要借助cron表达式且都提前定义好放在配置文件里,不能在项目运行中动态修改任务执行时间,实在不太灵活。现在我们就来实现可以动态修改cron表达式的定时任务,感兴趣的可以了解一下
    2022-10-10

最新评论