Python计算图片数据集的均值方差示例详解

 更新时间:2022年05月19日 14:31:06   作者:萤-火  
这篇文章主要为大家介绍了Python计算图片数据集的均值方差,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

在做图像处理的时候,有时候需要得到整个数据集的均值方差数值,以下代码可以解决你的烦恼:

(做这个之前一定保证所有的图片都是统一尺寸,不然算出来不对,我的代码里设计的是512*512,可以自己调整,同一尺寸的代码我也有:

Python批量reshape图片

# -*- coding: utf-8 -*-
"""
Created on Thu Aug 23 16:06:35 2018
@author: libo
"""
from PIL import Image
import os
def image_resize(image_path, new_path):           # 统一图片尺寸
    print('============>>修改图片尺寸')
    for img_name in os.listdir(image_path):
        img_path = image_path + "/" + img_name    # 获取该图片全称
        image = Image.open(img_path)              # 打开特定一张图片
        image = image.resize((512, 512))          # 设置需要转换的图片大小
        # process the 1 channel image
        image.save(new_path + '/'+ img_name)
    print("end the processing!")
if __name__ == '__main__':
    print("ready for ::::::::  ")
    ori_path = r"Z:\pycharm_projects\ssd\VOC2007\JPEGImages"                # 输入图片的文件夹路径
    new_path = 'Z:/pycharm_projects/ssd/VOC2007/reshape'                   # resize之后的文件夹路径
    image_resize(ori_path, new_path)
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
filepath = r'Z:\pycharm_projects\ssd\VOC2007\reshape'  # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename)) / 255.0
    R_channel = R_channel + np.sum(img[:, :, 0])
    G_channel = G_channel + np.sum(img[:, :, 1])
    B_channel = B_channel + np.sum(img[:, :, 2])
num = len(pathDir) * 512 * 512  # 这里(512,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename)) / 255.0
    R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
    G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
    B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)
R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

可能有点慢,慢慢等着就行。。。。。。。

最后得到的结果是介个

参考

计算数据集均值和方差

import os
from PIL import Image  
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread 
filepath = ‘/home/JPEGImages‘ # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in xrange(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename))
    R_channel = R_channel + np.sum(img[:,:,0])
    G_channel = G_channel + np.sum(img[:,:,1])
    B_channel = B_channel + np.sum(img[:,:,2])
num = len(pathDir) * 384 * 512 # 这里(384,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in xrange(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename))
    R_channel = R_channel + np.sum((img[:,:,0] - R_mean)**2)
    G_channel = G_channel + np.sum((img[:,:,1] - G_mean)**2)
    B_channel = B_channel + np.sum((img[:,:,2] - B_mean)**2)
R_var = R_channel / num
G_var = G_channel / num
B_var = B_channel / num
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

以上就是Python计算图片数据集的均值方差示例详解的详细内容,更多关于Python计算图片数据集均值方差的资料请关注脚本之家其它相关文章!

相关文章

  • 利用Python制作本地Excel的查询与生成的程序问题

    利用Python制作本地Excel的查询与生成的程序问题

    最近遇到这样一个项目需求制作一个程序有一个简单的查询入口实现Excel的查询与生成,今天教大家利用Python制作本地Excel的查询与生成的程序,感兴趣的朋友跟随小编一起看看吧
    2022-06-06
  • Python采集热搜数据实现详解

    Python采集热搜数据实现详解

    这篇文章主要为大家介绍了Python采集热搜数据实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • 树莓派与PC端在局域网内运用python实现即时通讯

    树莓派与PC端在局域网内运用python实现即时通讯

    这篇文章主要为大家详细介绍了树莓派与PC端在局域网内运用python实现即时通讯,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • python执行使用shell命令方法分享

    python执行使用shell命令方法分享

    这篇文章主要介绍了python执行使用shell命令方法分享,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • Python3 main函数使用sys.argv传入多个参数的实现

    Python3 main函数使用sys.argv传入多个参数的实现

    今天小编就为大家分享一篇Python3 main函数使用sys.argv传入多个参数的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python保留小数函数的几种使用总结

    python保留小数函数的几种使用总结

    本文主要介绍了python保留小数函数的几种使用总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • django框架基于模板 生成 excel(xls) 文件操作示例

    django框架基于模板 生成 excel(xls) 文件操作示例

    这篇文章主要介绍了django框架基于模板 生成 excel(xls) 文件操作,结合具体实例形式分析了Django框架基于模板生成excel的实现步骤与相关操作技巧,需要的朋友可以参考下
    2019-06-06
  • python 输出所有大小写字母的方法

    python 输出所有大小写字母的方法

    今天小编就为大家分享一篇python 输出所有大小写字母的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python中GIL全局解释锁的实现

    Python中GIL全局解释锁的实现

    本文主要介绍了Python中GIL全局解释锁的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Python CSS选择器爬取京东网商品信息过程解析

    Python CSS选择器爬取京东网商品信息过程解析

    这篇文章主要介绍了Python CSS选择器爬取京东网商品信息过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06

最新评论