python计算机视觉opencv矩形轮廓顶点位置确定

 更新时间:2022年05月20日 15:45:10   作者:qq_47150350  
这篇文章主要为大家介绍了python计算机视觉opencv矩形轮廓顶点位置确定,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

一、问题的引入

opencv在图像处理方面有着非常强大的功能,当我们需要使用opencv进行一些图像的矫正工作时,我们通常需要找到原图的一些关键点,然后计算变换后的图像坐标,最后通过仿射变换或者透视变换获得自己想要的矫正图像,比如将一张拍歪了的纸进行矫正,我们的首要任务就是找到原图的一些关键点,通常的做法就是找纸张的4个顶点。

二、问题的解决方法

第一步我们肯定要找到纸张相应的矩形轮廓,这里可以二值化再找,也可以使用一些算子查找,而本文的重点是解决怎样根据矩形轮廓去确定它具体的4个顶点的位置。

方法一:

使用线性规划的方法,在opencv的坐标系下使用x+y=z1和x-y=z2两条直线去切轮廓,分别当z1取最大时(x,y)是右下点,最小时是左上点;当z2取最大时(x,y)是右上点,最小时是左下点,如下图:

这个方法单独从轮廓的角度来说,只要旋转的角度不要刚刚好是45°或者135°,这个方法就没有问题,它得到的就是轮廓相对应的右下点、左上点、右上点、左下点,但不是原目标的相应点,就好像当纸张旋转超过45°时,这个方法得到的对于轮廓来说是正确的,但对于纸张来说就不对了,如下图:

这个时候如果按之前的一样进行矫正就会得到一个横放的纸张,这样里面的字都是横的,就不是我们想要的了所以这个方法要用来矫正的话,就需要对图像的旋转角度有一个计算和判断,可以通过下面代码获取角度:

#cnt:输入轮廓,angle:返回角度
(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

方法二

这个方法首先要使用轮廓获得其最小面积矩,然后观察研究矩形的性质可以根据当前的形状给出适合的x,y判断式,观察下图:

#找轮廓最小矩 cnt:轮廓  box:4个点无规律
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)

对于这样一个高比宽长的矩形,我们的方法是先将4个点按y从小到大进行排序,再取前两个按x从小到大进行排序,小的那个是左下,大的那个是右下;最后取后两个也按x从小到大进行排序,小的那个是左上,大的那个是右上。假如是一个宽比高长的矩形,我们就可以先按x的大小进行排序。这个从代码角度实现可能更为简洁,适用特定轮廓,对角度要求就更宽泛了些,除非旋转到了像上图右边一样的状况,而这种矫正一般出现的机率非常小。

三、一些实现代码

1、下面是使用方法一实现的顶点定位

import numpy as np
import cv2
def get4points(img: np.ndarray, thed, n):
    """
    :param img  the color image which shape is [height, width, depth]
    :return 4 point locations in list or tuple, for example: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
    """
    #灰度和二值化
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, binary = cv2.threshold(gray,thed,255,cv2.THRESH_BINARY)
    # 搜索轮廓
    contours, hierarchy = cv2.findContours(
        binary,
        cv2.RETR_LIST,
        cv2.CHAIN_APPROX_SIMPLE)
    #按轮廓长度选取需要轮廓
    len_list = []
    for i in range(len(contours)):
        len_list.append(len(contours[i]))
    #选第二长的
    sy = np.argsort(np.array(len_list))[-n]
    #寻找顶点
    sum_list = []
    dif_list = []
    for i in contours[sy]:
        sum = i[0][0]+i[0][1]
        sum_list.append(sum)
        dif_list.append(i[0][0]-i[0][1])
    id_lb = np.argsort(np.array(sum_list))
    id_lb2 = np.argsort(np.array(dif_list))
    lu_id , rd_id = id_lb[0] , id_lb[-1]
    ld_id , ru_id = id_lb2[0] , id_lb2[-1]
    points = np.array([contours[sy][lu_id][0],contours[sy][rd_id][0],contours[sy][ld_id][0],contours[sy][ru_id][0]])
    return points , contours , sy

2、下面是使用方法2实现的顶点定位

def getpoints(binary: np.ndarray  , num: int ):
    # 搜索轮廓
    contours, hierarchy = cv2.findContours(
        binary,
        cv2.RETR_LIST,
        cv2.CHAIN_APPROX_SIMPLE)
    #按轮廓位置最左(x最小)选取
    x_list = []
    for i in contours:
        x_sum = 0
        for kk in i:
            x_sum += kk[0][0]
        x_av = x_sum/len(i)
        x_list.append(x_av)
    sy = np.argsort(np.array(x_list))[num]
    cnt = contours[sy]
    #找轮廓最小矩
    rect = cv2.minAreaRect(cnt)
    box = cv2.boxPoints(rect)
    return box , contours , sy
def findpoints(points):
    #区分矩形顶点位置
    point_y=sorted(points,key=lambda t:t[1])
    lu, ru =sorted(point_y[:2],key=lambda t:t[0])
    ld, rd =sorted(point_y[2:],key=lambda t:t[0])
    return [list(lu), list(ld), list(ru),list(rd)]

3、下面是一些展示代码

#展示顶点
def show_points(img , points):
    point_size = 8
    point_color = (0, 0, 255) # BGR
    thickness = 4 # 可以为 0 、4、8
    points_list = [tuple(i) for i in np.int32(points).reshape(-1,2)]
    for point in points_list:
        cv2.circle(img, point, point_size, point_color, thickness)
    img = cv2.resize(img,(808,808))
    cv2.imshow('img',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # cv2.imwrite('dd.jpg',img)
#展示轮廓
def show_Contour(img , contours , sy):
    cv2.drawContours(img, contours , sy , (25, 254, 0), 4)
    img = cv2.resize(img,(808,808))
    cv2.imshow('img',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # cv2.imwrite('mm.jpg',img)

以上就是python计算机视觉opencv矩形轮廓顶点位置确定的详细内容,更多关于python opencv矩形轮廓顶点定位的资料请关注脚本之家其它相关文章!

相关文章

  • Python实现获取域名所用服务器的真实IP

    Python实现获取域名所用服务器的真实IP

    本文是给大家分享的使用python获取到域名所在服务器的真实IP,原因是现在很多的网站都使用了CDN,大家很难直接查到域名的服务器的IP,本文是使用了一个巧妙的方法,详情请仔细看看下文吧
    2015-10-10
  • Django3中的自定义用户模型实例详解

    Django3中的自定义用户模型实例详解

    这篇文章主要给大家介绍了关于Django3中自定义用户模型的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Python与HTTP服务交互的三种方式

    Python与HTTP服务交互的三种方式

    本文主要介绍了Python与HTTP服务交互的三种方式,通过http.client,requests,RissionPage,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • pandas DataFrame.shift()函数的具体使用

    pandas DataFrame.shift()函数的具体使用

    本文主要介绍了pandas DataFrame.shift()函数的使用,pandas DataFrame.shift()函数可以把数据移动指定的位数,有需要了解pandas DataFrame.shift()用法的朋友可以参考一下
    2021-05-05
  • 黑科技 Python脚本帮你找出微信上删除你好友的人

    黑科技 Python脚本帮你找出微信上删除你好友的人

    黑科技,Python脚本帮你找出微信上删除你好友的人,有兴趣的朋友可以阅读一下
    2016-01-01
  • Python自动化办公之读取Excel数据的实现

    Python自动化办公之读取Excel数据的实现

    这篇文章主要为大家详细介绍了如何通过Python实现Excel数据的读取,文中的示例代码讲解详细,对我们学习有一定帮助,需要的可以参考一下
    2022-05-05
  • 利用PyQt5生成过年春联

    利用PyQt5生成过年春联

    这篇文章主要介绍了如何利用PyQt5生成过年春联。通过在界面上输入春联的上、下批和横批汉字从而生成春联图像,最后将春联图片保存。需要的可以参考一下
    2022-01-01
  • Python中endswith()函数的基本使用

    Python中endswith()函数的基本使用

    这篇文章主要介绍了Python中endswith()函数的基本使用,是Python学习当中的基础知识,该函数可以用来检测文件类型,需要的朋友可以参考下
    2015-04-04
  • python中有函数重载吗

    python中有函数重载吗

    在本篇内容里下边给大家整理的是关于python函数重载的知识点总结,有需要的朋友们可以学习下。
    2020-05-05
  • Python中的 Numpy 数组形状改变及索引切片

    Python中的 Numpy 数组形状改变及索引切片

    这篇文章主要介绍了Python中的 Numpy 数组形状改变及索引切片,Numpy提供了一个reshape()方法,它可以改变数组的形状,返回一个新的数组,更多相关内容需要的小伙伴可以参考下面文章
    2022-05-05

最新评论