C++超详细讲解稀疏矩阵

 更新时间:2022年05月25日 10:50:06   作者:锡兰Ceylan_  
今天小编就为大家分享一篇关于C++稀疏矩阵的转置思路并实现乘法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧

稀疏矩阵

矩阵与稀疏矩阵的定义

Q:什么是矩阵

A:数学上,一个矩阵由 m 行 n 列的元素组成,是一个 m 行,n 列的表,m 和 n 是矩阵的维度。一般地,写作 mxn(读作“m乘n”)来指明一个 m 行 n 列矩阵。矩阵的元素个数总计为 mn 个。如果 m 等于 n ,矩阵为方阵。

一般情况下,矩阵的标准存储方式是一个二维数组 a[MAX_ROWS][MAX_COLS] 。利用这种存储方式,可以通过 a[i][j] ,通过行下标,列下标快速找到任意元素的存储位置。

Q:什么是稀疏矩阵

A:一个矩阵的绝大部分都为零元素,我们把这种矩阵称为稀疏矩阵。

如图:矩阵中只有 2/15 是非零元素,这就是一个标准的稀疏矩阵

Q:二维数组储存矩阵的缺点

A:如果一个矩阵中包含很多零元素(是稀疏矩阵),就会浪费大量的存储空间。因此,稀疏矩阵的存储表示只需存储非零元素。

Q:稀疏矩阵的存储方式

A:通过对矩阵的分析,我们发现使用三元组 <row,col,value> 能够唯一的刻画矩阵的任意一个元素。这意味者可以使用三元数组来存储表示稀疏矩阵。

代码演示

#define MAX_TERMS 101	//定义最大长度 
typedef struct{
	int col;
	int row;
	int xalue;
}term;
term a[MAX_TERMS];

我们可以用 a[0].row 表示行的数目,用 a[0].col 表示列的数目,用 a[0].value 表示非零元素的总数。其他位置 row 域存放行下标, col 域存放列下标,value 域存放元素值。三元组按照行的顺序排序,并且在同一行内按照列的顺序排序。

稀疏矩阵存储为三元组

 
 
a[0]564
a[1]0015
a[2]1111
a[3]236
a[4]409

稀疏矩阵的转置

详细思路

为了转置一个矩阵,必须交换它的行和列。也就是说,原矩阵的任意元素 a[i][j] 应该成为其转置矩阵的元素 b[j][i]

思路一

依次循环每一列,找到每一列的所有元素并把他们储存在转置矩阵的对应的行上。

//伪代码
for 对于 j 列的所有元素
    把元素<i,j,value>放置在元素<j,i,value>中

代码演示

void transpose(term a[],term b[])
//b是a的转置 
{
	int n,i,j,currentb;
	n=a[0].value;			//元素总数 
	b[0].row=a[0].col;		//b的行数=a的列数
	b[0].co 1=a[0].row;	    //b的列数=a的行数
	b[0].value =n;
	if(n> 0) 
	{// 非零矩阵 
		currentb=1;
		for(i=0;i<a[0].col;i++)
		//按a的列转置
			for(j=1;j<=n;j++)
			//找出当前列的所有元素
				if(a[j].col==i)
				{//元素是当前列的,加入b
					b[currentb]. row=a[j]. col;
					b[currentb]. col=a[j]. row;
					b[currentb]. value=a[j]. value;
					currentb++;
				}
	}
}

思路二

首先确定原矩阵中每一列的元素个数,这也就是其转置矩阵中每一行的元素个数。于是就可以得到转置矩阵每行的起始位置,从而,可以将原矩阵的元素依次移到其转置矩阵中的恰当位置。

代码演示

void fast transpose(term a[], term b[])
{
//将a的转置矩阵存放于b中 
	int row terms[MAX_COL], starting pos[MAX_COL]; 
	int i,j, num_cols=a[0].col, num_terms=a[0].value;
	b[0].row=num_cols;b[0].col=a[0].row;
	b[0].value=num_terms;
	if(num_terms>0){//非零矩阵
		for(i=0;i<num_cols;i++)
			row_terms[i]=0;
		for(i=1;i<=num_terms;i++)
			row_terms[a[i]. co]]++;
		starting_pos[0]=1;
		for(i=1;i<num cols;i++)
			starting_pos[i]=starting_pos[i-1]+row_terms[i-l];
		for(i=1;i<=num_terms;i++){
			j=starting_pos[a[i].col]++;
			b[j].row=a[i].col;b[j].col=a[i].row;
			b[j].value=a[i].value;
		}
	}
}

稀疏矩阵的乘法

Q:什么是矩阵乘法

A:设A为 mxp 的矩阵,B为 pxn 的矩阵,那么称 mxn 的矩阵D为矩阵A与B的乘积,记作D=AB,其中矩阵D中的第 i 行第 j 列元素可以表示为:

注意:两个稀疏矩阵的乘积可能不再是稀疏矩阵

详细思路

我们可以按照行的顺序计算D的元素,把元素存放到正确的位置,这样就不用移动已计算出的元素的位置。一般情况下,必须遍历整个B才能得到第 j 列的所有元素。但是,我们可以先计算 B 的转置,使列元素顺序相续排序,可以避免重复多次遍历整个 B 。

对于找出的 A 的第 i 行和 B 的第 j 列的所有元素,做合并操作就能实现矩阵乘法。

代码演示

void storesum(term a[],int *totald,int row,int column,int *sum)
{//如果 *sum!=0,它的行和列存储位置为 d 中的 *totald+1
	if(*sum)
		if(*tptald<MAX_TERMS)
		{
			d[++*totald].row=row;
			d[*totald].col=column;
			d[*totald].value=*sum;
			*sum=0;
		}
		else{
			fprintf(stderr,"Numbers of terms in product exceeds %d\n",MAX_TERMS); 
			exit(1);
		}
}
void mmult(term a[], term b[], term d[])
//将两个稀疏矩阵相乘 
{
	int i,j,column,totalb=b[0].value,totald=0; 
	int rows_a=a[0].row,cols_a=a[0].col;
	totala=a[0].value;int cols_b=b[0].col;
	int row_begin=1, row=a[1].row, sum=0; 
	int new_b[MAX-TERMS][3];
	if(cols_a!=b[0].row){
		fprintf(stderr,"Incompatible matrices\n"); 
		exit(1);
	}
	fast_transpose(b.new_b);
	//设置边界条件
	a[totala+1].row=rows_a;
	new_b[totalb+1].row=cols_b; 
	new_b[totalb+1].col=0;
	for(i=1;i<=totala;){
		column=new_b[1].row; 
		for(j=1;j<=totalb+1;){
		//将a的行乘以b的列
			if(a[i].row!=row){
				storesum(d,&totald,row,column,&sum);
				i=row_begin;
				for(;new_b[j].row==column;j++)
					;
				column=new_b[j]. row;
			}
			else if(new_b[j].row!=column){
				storesum(d,&totald,row,column,&sum); 
				i=row_begin;
				column=new_b[j].row;
			}
			else switch(COMPARE(a[i].col,new_b[j].col)){
				case-1://转到a中的下一项
					i++;break;
				case 0://添加项,转到a和b的下一项 
					sum+=(a[i++].value*new_b[j++].value); break;
				case 1://来到b的下一项
					j++;
			}
	}// for j<=totalb+1 结束循环 
	for(;a[i].row==row;i++)
		;
	row_begin=i;row=a[i].row;
	}//for i<=totala 结束循环 
	d[0].row=rows_a;
	d[0].col=cols_b;d[0].value=totald;
}

到此这篇关于C++超详细讲解稀疏矩阵的文章就介绍到这了,更多相关C++稀疏矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C语言实现的一个万年历小程序

    C语言实现的一个万年历小程序

    这篇文章主要介绍了C语言实现的一个万年历小程序,具有一定的参考价值,做C语言日期计算的朋友可以参考下
    2014-07-07
  • 循环队列详解及队列的顺序表示和实现

    循环队列详解及队列的顺序表示和实现

    这篇文章主要介绍了循环队列详解及队列的顺序表示和实现的相关资料,需要的朋友可以参考下
    2016-12-12
  • C++11 中的std::function和std::bind详解

    C++11 中的std::function和std::bind详解

    这篇文章主要介绍了C++ 11 std::function和std::bind,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-10-10
  • C++实现字符串类型相互转换的代码示例

    C++实现字符串类型相互转换的代码示例

    在C/C++编程中,字符串是非常基础且常用的数据类型,但是由于不同的编程语言或标准库可能采用不同的字符串类型,因此在不同的应用场景下可能需要进行字符串类型的相互转换,本文将介绍如何在C/C++中将char*,std::string,QString,CString/MFC String相互转换
    2023-06-06
  • C语言结构体详细图解分析

    C语言结构体详细图解分析

    C 数组允许定义可存储相同类型数据项的变量,结构是 C 编程中另一种用户自定义的可用的数据类型,它允许你存储不同类型的数据项,本篇让我们来了解C 的结构体
    2022-03-03
  • C语言实现CRC校验算法的示例详解

    C语言实现CRC校验算法的示例详解

    CRC(Cyclic Redundancy Check,循环冗余校验)是一种常用的错误检测技术,用于验证数据在传输或存储过程中是否发生了错误,本文主要介绍了C语言如何实现CRC校验算法,需要的可以参考一下
    2023-08-08
  • C语言菜鸟基础教程之数据类型

    C语言菜鸟基础教程之数据类型

    在 C 语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。
    2017-10-10
  • C语言实现文件读写操作

    C语言实现文件读写操作

    这篇文章主要为大家详细介绍了C语言实现文件读写操作,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-12-12
  • OpenGL实现3D空间中移动图像

    OpenGL实现3D空间中移动图像

    这篇文章主要为大家详细介绍了OpenGL实现3D空间中移动图像,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-08-08
  • C++设计模式之单例模式

    C++设计模式之单例模式

    这篇文章主要介绍了C++设计模式之单例模式,本文同时给出了4种单例模式的实现代码,需要的朋友可以参考下
    2014-09-09

最新评论