Python+Empyrical实现计算风险指标

 更新时间:2022年05月28日 08:48:42   作者:Ckend  
Empyrical 是一个知名的金融风险指标库。它能够用于计算年平均回报、最大回撤、Alpha值等。下面就教你如何使用 Empyrical 这个风险指标计算神器

Empyrical 是一个知名的金融风险指标库。它能够用于计算年平均回报、最大回撤、Alpha值、Beta值、卡尔马率、Omega率、夏普率等。它还被用于zipline和pyfolio,是Quantopian开发的三件套之一。

下面就教你如何使用 Empyrical 这个风险指标计算神器。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点

为了实现识别猫的功能,我们需要安装 paddlepaddle, 进入他们的官方网站就有详细的指引

请选择以下任一种方式输入命令安装依赖

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install empyrical

2. Empyrical 基本使用

计算最大回撤,你只需要从 empyrical 库中引入 max_drawdown ,将数据作为参数传入计算,一行代码就能实现:

import numpy as np
from empyrical import max_drawdown

returns = np.array([.01, .02, .03, -.4, -.06, -.02])

# 计算最大回撤
max_drawdown(returns)
# 结果:-0.4472800000000001

同样地,如果你需要计算alpha和beta指标:

import numpy as np
from empyrical import alpha_beta

returns = np.array([.01, .02, .03, -.4, -.06, -.02])
benchmark_returns = np.array([.02, .02, .03, -.35, -.05, -.01])

# 计算alpha和Beta值
alpha, beta = alpha_beta(returns, benchmark_returns)
print(alpha, beta)
# 结果:-0.7960672549836803 1.1243025418474892

如果你想要计算夏普率,同样也是一行代码就能解决,只不过你需要注意这几个参数的意义:

import numpy as np
from empyrical import sharpe_ratio

returns = np.array([.01, .02, .03, -.4, -.06, -.02])

# 计算夏普率
sr = sharpe_ratio(returns, risk_free=0, period='daily', annualization=None)
print(sr)
# 结果:-6.7377339531573535

各个参数的意义如下:

参数数据类型意义
returnspandas.Series策略的日回报,非累积。
risk_freefloat本周期内的无风险利率
periodstr, optional确定回报数据的周期,默认为天。
annualizationint, optional交易日总数(用于计算年化)
如果是daily,则默认为252个交易日。

3.更多的指标

Empyrical 能提供使用的指标非常多,这里就不一一介绍了,基本上用法都和夏普率的计算方法差不多,这里介绍他们的方法和参数。

3.1 omega_ratio

empyrical.omega_ratio(returns, risk_free=0.0, required_return=0.0, annualization=252)
参数数据类型意义
returnspandas.Series策略的日回报,非累积。
risk_freefloat本周期内的无风险利率
required_returnfloat, optional投资者可接受的最低回报。
annualizationint, optional交易日总数(用于计算年化)
如果是daily,则默认为252个交易日。

3.2 calmar_ratio

empyrical.calmar_ratio(returns, period='daily', annualization=None)
参数数据类型意义
returnspandas.Series策略的日回报,非累积。
periodstr, optional确定回报数据的周期,默认为天。
annualizationint, optional交易日总数(用于计算年化)。如果是daily,则默认为252个交易日。

3.3 sortino_ratio

empyrical.sortino_ratio(returns, required_return=0, period='daily', annualization=None, _downside_risk=None)
参数数据类型意义
returnspandas.Series策略的日回报,非累积。
required_returnfloat最小投资回报
periodstr, optional确定回报数据的周期,默认为天。
annualizationint, optional交易日总数(用于计算年化)。如果是daily,则默认为252个交易日。
_downside_riskfloat, optional给定输入的下跌风险。如果没有提供则自动计算

更多的指标及其说明,请查看empyrical源代码的stats.py文件,里面还包含了所有指标的计算逻辑,如果你想了解每个指标的计算方法,可以查看这个文件进行学习

到此这篇关于Python+Empyrical实现计算风险指标的文章就介绍到这了,更多相关Python Empyrical计算风险指标内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python定时执行之Timer用法示例

    Python定时执行之Timer用法示例

    这篇文章主要介绍了Python定时执行之Timer用法,实例分析了Timer模块的原理及相关使用技巧,需要的朋友可以参考下
    2015-05-05
  • pytorch中torch.stack()函数用法解读

    pytorch中torch.stack()函数用法解读

    这篇文章主要介绍了pytorch中torch.stack()函数用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-04-04
  • python使用 multiprocessing 多进程处理批量数据的示例代码

    python使用 multiprocessing 多进程处理批量数据的示例代码

    这篇文章主要介绍了使用 multiprocessing 多进程处理批量数据的示例代码,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-09-09
  • Python类的继承用法示例

    Python类的继承用法示例

    这篇文章主要介绍了Python类的继承用法,结合实例形式分析了Python类的定义、继承等相关操作技巧,需要的朋友可以参考下
    2019-01-01
  • python如何将多个映射合并为一个映射

    python如何将多个映射合并为一个映射

    ChainMap类是Python中collections模块的一部分,用于将多个字典合并为一个映射,而不会在物理上合并字典,这使得字典中相同的键可以共存,输出结果取决于键的检索顺序,ChainMap通过维护一个底层映射的列表,重定义字典操作来实现这一功能
    2024-09-09
  • Django之form组件自动校验数据实现

    Django之form组件自动校验数据实现

    这篇文章主要介绍了Django之form组件自动校验数据实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01
  • Python输出各行命令详解

    Python输出各行命令详解

    本篇文章给大家详细分析了Python输出各行命令的解释,为初学者提供详细的讲解,有兴趣的朋友参考下。
    2018-02-02
  • django中使用原生sql语句的方法步骤

    django中使用原生sql语句的方法步骤

    这篇文章主要介绍了django中使用原生sql语句的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • Python中is与==的使用区别详解

    Python中is与==的使用区别详解

    这篇文章小编主要给大家讲解的是Python中is与==的使用区别的相关资料,需要的下伙伴可以参考下面文章内容的具体详细资料
    2021-09-09
  • Django中多种重定向方法使用详解

    Django中多种重定向方法使用详解

    这篇文章主要介绍了Django中多种重定向方法使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07

最新评论