Docker-Compose搭建Spark集群的实现方法
一、前言
在前文中,我们使用Docker-Compose完成了hdfs集群的构建。本文将继续使用Docker-Compose,实现Spark集群的搭建。
二、docker-compose.yml
对于Spark集群,我们采用一个mater节点和两个worker节点进行构建。其中,所有的work节点均分配1一个core和 1GB的内存。
Docker镜像选择了bitnami/spark的开源镜像,选择的spark版本为2.4.3,docker-compose配置如下:
master: image: bitnami/spark:2.4.3 container_name: master user: root environment: - SPARK_MODE=master - SPARK_RPC_AUTHENTICATION_ENABLED=no - SPARK_RPC_ENCRYPTION_ENABLED=no - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no - SPARK_SSL_ENABLED=no ports: - '8080:8080' - '7077:7077' volumes: - ./python:/python worker1: image: bitnami/spark:2.4.3 container_name: worker1 user: root environment: - SPARK_MODE=worker - SPARK_MASTER_URL=spark://master:7077 - SPARK_WORKER_MEMORY=1G - SPARK_WORKER_CORES=1 - SPARK_RPC_AUTHENTICATION_ENABLED=no - SPARK_RPC_ENCRYPTION_ENABLED=no - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no - SPARK_SSL_ENABLED=no worker2: image: bitnami/spark:2.4.3 container_name: worker2 user: root environment: - SPARK_MODE=worker - SPARK_MASTER_URL=spark://master:7077 - SPARK_WORKER_MEMORY=1G - SPARK_WORKER_CORES=1 - SPARK_RPC_AUTHENTICATION_ENABLED=no - SPARK_RPC_ENCRYPTION_ENABLED=no - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no - SPARK_SSL_ENABLED=no
在master节点中,也映射了一个/python目录,用于存放pyspark代码,方便运行。
对于master节点,暴露出7077端口和8080端口分别用于连接spark以及浏览器查看spark UI,在spark UI中,集群状态如下图(启动后):
如果有需要,可以自行添加worker节点,其中可以修改SPARK_WORKER_MEMORY
与SPARK_WORKER_CORES
对节点分配的资源进行修改。
对于该镜像而言,默认exec进去是无用户的,会导致一些安装命令权限的不足,无法安装。例如需要运行pyspark,可能需要安装numpy、pandas等库,就无法使用pip完成安装。而通过user: root
就能设置默认用户为root用户,避免上述问题。
三、启动集群
同上文一样,在docker-compose.yml的目录下执行docker-compose up -d
命令,就能一键构建集群(但是如果需要用到numpy等库,还是需要自己到各节点内进行安装)。
进入master节点执行spark-shell
,成功进入:
四、结合hdfs使用
将上文的Hadoop的docker-compose.yml与本次的结合,得到新的docker-compose.yml:
version: "1.0" services: namenode: image: bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8 container_name: namenode ports: - 9870:9870 - 9000:9000 volumes: - ./hadoop/dfs/name:/hadoop/dfs/name - ./input:/input environment: - CLUSTER_NAME=test env_file: - ./hadoop.env datanode: image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8 container_name: datanode depends_on: - namenode volumes: - ./hadoop/dfs/data:/hadoop/dfs/data environment: SERVICE_PRECONDITION: "namenode:9870" env_file: - ./hadoop.env resourcemanager: image: bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8 container_name: resourcemanager environment: SERVICE_PRECONDITION: "namenode:9000 namenode:9870 datanode:9864" env_file: - ./hadoop.env nodemanager1: image: bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8 container_name: nodemanager environment: SERVICE_PRECONDITION: "namenode:9000 namenode:9870 datanode:9864 resourcemanager:8088" env_file: - ./hadoop.env historyserver: image: bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8 container_name: historyserver environment: SERVICE_PRECONDITION: "namenode:9000 namenode:9870 datanode:9864 resourcemanager:8088" volumes: - ./hadoop/yarn/timeline:/hadoop/yarn/timeline env_file: - ./hadoop.env master: image: bitnami/spark:2.4.3-debian-9-r81 container_name: master user: root environment: - SPARK_MODE=master - SPARK_RPC_AUTHENTICATION_ENABLED=no - SPARK_RPC_ENCRYPTION_ENABLED=no - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no - SPARK_SSL_ENABLED=no ports: - '8080:8080' - '7077:7077' volumes: - ./python:/python worker1: image: bitnami/spark:2.4.3-debian-9-r81 container_name: worker1 user: root environment: - SPARK_MODE=worker - SPARK_MASTER_URL=spark://master:7077 - SPARK_WORKER_MEMORY=1G - SPARK_WORKER_CORES=1 - SPARK_RPC_AUTHENTICATION_ENABLED=no - SPARK_RPC_ENCRYPTION_ENABLED=no - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no - SPARK_SSL_ENABLED=no worker2: image: bitnami/spark:2.4.3-debian-9-r81 container_name: worker2 user: root environment: - SPARK_MODE=worker - SPARK_MASTER_URL=spark://master:7077 - SPARK_WORKER_MEMORY=1G - SPARK_WORKER_CORES=1 - SPARK_RPC_AUTHENTICATION_ENABLED=no - SPARK_RPC_ENCRYPTION_ENABLED=no - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no - SPARK_SSL_ENABLED=no
运行集群(还需要一个hadoop.env文件见上文)长这样:
通过Docker容器的映射功能,将本地文件与spark集群的master节点的/python进行了文件映射,编写的pyspark通过映射可与容器中进行同步,并通过docker exec指令,完成代码执行:
运行了一个回归程序,集群功能正常:
到此这篇关于Docker-Compose搭建Spark集群的实现方法的文章就介绍到这了,更多相关Docker-Compose搭建Spark集群内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
详解如何使用Docker部署Django+MySQL8开发环境
这篇文章主要介绍了详解如何使用Docker部署Django+MySQL8开发环境,文中通过示例代码以及图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧2020-07-07Docker命令中的各种参数使用(run、v、rm、-w、-u、-e)
本文主要介绍了Docker命令中的各种参数使用(run、v、rm、-w、-u、-e),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2023-06-06Docker搭建代码检测平台SonarQube并检测maven项目的流程
这篇文章主要介绍了Docker搭建代码检测平台SonarQube并检测maven项目,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-05-05docker-compose启动springboot项目连接mysql问题
这篇文章主要介绍了docker-compose启动springboot项目连接mysql问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2023-03-03
最新评论