详解Python中Addict模块的使用方法

 更新时间:2022年05月30日 10:47:05   作者:Ckend  
Addit是一个Python模块,除了提供标准的字典语法外,Addit 生成的字典的值既可以使用属性来获取,也可以使用属性进行设置。本文将详细讲讲它的使用方法,需要的可以参考一下

介绍

Addit 是一个Python模块,除了提供标准的字典语法外,Addit 生成的字典的值既可以使用属性来获取,也可以使用属性进行设置。

这意味着你不用再写这样的字典了:

body = {
    'query': {
        'filtered': {
            'query': {
                'match': {'description': 'addictive'}
            },
            'filter': {
                'term': {'created_by': 'Mats'}
            }
        }
    }
}

相反,你只需编写以下三行代码就能完成目的:

body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'

1.安装

你可以通过 pip 安装:

pip install addict

或通过 conda :

conda install addict -c conda-forge

Addit 在Python2.7+和Python3上都可以运行。

2.用法

Addict 继承自字典,但在访问和设置其值方面更加灵活。使用 Addict 的字典是一种乐趣!

设置嵌套词典的项是极其舒服的:

>>> from addict import Dict
>>> mapping = Dict()
>>> mapping.a.b.c.d.e = 2
>>> mapping
{'a': {'b': {'c': {'d': {'e': 2}}}}}

如果Dict是用任何可迭代值实例化的,它将遍历并克隆这些值,然后写入到对应的属性及值中,比如:

>>> mapping = {'a': [{'b': 3}, {'b': 3}]}
>>> dictionary = Dict(mapping)
>>> dictionary.a[0].b
3

 mapping['a'] 不再与 dictionary['a'] 相同。

>>> mapping['a'] is dictionary['a']
False

当然,此特点仅限于构造函数,而不是在使用属性或设置值时:

>>> a = Dict()
>>> b = [1, 2, 3]
>>> a.b = b
>>> a.b is b
True

3.要牢记的事情

记住, int 不是有效的属性名,因此必须使用 get/setitem 语法 设置/获取 非字符串的 dict 键:

>>> addicted = Dict()
>>> addicted.a.b.c.d.e = 2
>>> addicted[2] = [1, 2, 3]
{2: [1, 2, 3], 'a': {'b': {'c': {'d': {'e': 2}}}}}

不过,你可以随意混合使用这两种语法:

>>> addicted.a.b['c'].d.e
2

4.属性,如键、item等

Addit 不会让你覆盖 dict 的属性,因此以下操作将不起作用:

>>> mapping = Dict()
>>> mapping.keys = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
 File "addict/addict.py", line 53, in __setattr__
 raise AttributeError("'Dict' object attribute '%s' is read-only" % name)
AttributeError: 'Dict' object attribute 'keys' is read-only

不过,使用下面这种方式就可以:

>>> a = Dict()
>>> a['keys'] = 2
>>> a
{'keys': 2}
>>> a['keys']
2

5.默认值

对于不在字典中的键,Addit的行为如 defaultdict(Dict) ,因此丢失的键返回一个空的 Dict 而不是抛出 KeyError 如果此行为不是所需的,则可以使用以下方式恢复抛出KeyError:

>>> class DictNoDefault(Dict):
>>>   def __missing__(self, key):
>>>     raise KeyError(key)

但请注意,这样会失去速记赋值功能(addicted.a.b.c.d.e = 2 )

6.转化为普通字典

如果你觉得将 Addict 传递到其他函数或模块并不安全,请使用 to_dict() 方法,它返回会把 Addict 转化为普通字典。

>>> regular_dict = my_addict.to_dict()
>>> regular_dict.a = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
 AttributeError: 'dict' object has no attribute 'a'

当您希望在几行代码中创建嵌套的字典,然后将其发送到不同的函数或模块时,这非常适合:

body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'
third_party_module.search(query=body.to_dict())

7.计数

Dict轻松访问和修改深度嵌套属性的能力使其成为计数的理想选择。使用Addict,你还可以容易允许按多个级别计数,内部使用的原理是collections.Counter

比如以下数据:

data = [
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'F', 'eyes': 'green'},
    {'born': 1980, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'F', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'F', 'eyes': 'green'},
    {'born': 1981, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'F', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'M', 'eyes': 'green'},
    {'born': 1981, 'gender': 'F', 'eyes': 'blue'}
]

如果你想计算有多少人出生在born性别的gender使用eyes眼睛,你可以很容易地计算出这些信息:

counter = Dict()

for row in data:
    born = row['born']
    gender = row['gender']
    eyes = row['eyes']

    counter[born][gender][eyes] += 1 print(counter)

# 结果:{1980: {'M': {'blue': 1, 'green': 3}, 'F': {'blue': 1, 'green': 1}}, 1981: {'M': {'blue': 2, 'green': 1}, 'F': {'blue': 2, 'green': 1}}}

8.更新

普通字典的更新方式如下:

>>> d = {'a': {'b': 3}}
>>> d.update({'a': {'c': 4}})
>>> print(d)
{'a': {'c': 4}}

 addict 的更新方式如下,它会递归并实际更新嵌套的字典:

>>> D = Dict({'a': {'b': 3}})
>>> D.update({'a': {'c': 4}})
>>> print(D)
{'a': {'b': 3, 'c': 4}}

9.Addict 是怎么来的

这个模块完全是从用Python创建Elasticsearch查询的繁琐过程中发展而来的。每当你发现自己在写了很复杂的字典逻辑时,只要记住你没有必要这样做,使用 Addict 就行。

到此这篇关于详解Python中Addict模块的使用方法的文章就介绍到这了,更多相关Python Addict模块内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Pytorch to(device)用法

    Pytorch to(device)用法

    今天小编就为大家分享一篇Pytorch to(device)用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • 分享5个数据处理更加灵活的pandas调用函数方法

    分享5个数据处理更加灵活的pandas调用函数方法

    这篇文章主要介绍了分享5个数据处理更加灵活的pandas调用函数方法,文章基于python的相关内容展开详细介绍,需要的小伙伴可以参考一下
    2022-04-04
  • python实现web应用框架之增加响应对象

    python实现web应用框架之增加响应对象

    这篇文章主要介绍了python利用web应用框架如何增加响应对象的,文中有相应的代码示例,对大家的学习或工作有一定的参考价值,需要的同学可以参考下
    2023-05-05
  • python实现AES加密与解密

    python实现AES加密与解密

    这篇文章主要为大家详细介绍了python实现AES加密与解密,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-03-03
  • 深入解析Python中的list列表及其切片和迭代操作

    深入解析Python中的list列表及其切片和迭代操作

    这篇文章主要介绍了Python中的列表及其切片和迭代操作,文中还对tuple元组作了介绍,需要的朋友可以参考下
    2016-03-03
  • python实现跨excel的工作表sheet之间的复制方法

    python实现跨excel的工作表sheet之间的复制方法

    今天小编就为大家分享一篇python实现跨excel的工作表sheet之间的复制方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python拼接字符串的7种方法总结

    Python拼接字符串的7种方法总结

    这篇文章主要给大家总结介绍了关于Python拼接字符串的7种方法,分别是来自C语言的%方式、format()拼接方式、() 类似元组方式、面向对象模板拼接、join()拼接方式以及f-string方式,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2018-11-11
  • Django获取前端数据的实现方式

    Django获取前端数据的实现方式

    这篇文章主要介绍了Django获取前端数据的实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • Python实现的检测网站挂马程序

    Python实现的检测网站挂马程序

    这篇文章主要介绍了Python实现的检测网站挂马程序,需要的朋友可以参考下
    2014-11-11
  • Python中进程和线程的区别详解

    Python中进程和线程的区别详解

    这篇文章主要介绍了Python中进程和线程的区别详解,需要的朋友可以参考下
    2017-10-10

最新评论