Java深入分析了解平衡二叉树

 更新时间:2022年06月03日 10:31:15   作者:洛语言  
平衡二叉树又被称为AVL树(有别于AVL算法),且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。本文将详解介绍一下平衡二叉树的原理与实现,需要的可以参考一下

AVL树的引入

搜索二叉树有着极高的搜索效率,但是搜索二叉树会出现以下极端情况:

这样的二叉树搜索效率甚至比链表还低。在搜索二叉树基础上出现的平衡二叉树(AVL树)就解决了这样的问题。当平衡二叉树(AVL树)的某个节点左右子树高度差的绝对值大于1时,就会通过旋转操作减小它们的高度差。

基本概念

AVL树本质上还是一棵二叉搜索树,它的特点是:

  • 本身首先是一棵二叉搜索树。
  • 每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。
  • 当插入一个节点或者删除一个节点时,导致某一个节点的左右子树高度差的绝对值大于1,这时需要通过左旋和右旋的操作使二叉树再次达到平衡状态。

平衡因子(balanceFactor)

  • 一个结点的左子树与右子树的高度之差。
  • AVL树中的任意结点的BF只可能是-1,0和1。

基础设计

下面是AVL树需要的简单方法和属性:

public class AVLTree <E extends Comparable<E>>{
    class Node{
        E value;
        Node left;
        Node right;
        int height;
        public Node(){}
        public Node(E value){
            this.value = value;
            height = 1;
            left = null;
            right = null;
        }
        public void display(){
            System.out.print(this.value + " ");
        }
    }
    Node root;
    int size;
    public int size(){
        return size;
    }
    public int getHeight(Node node) {
        if(node == null) return 0;
        return node.height;
    }
    //获取平衡因子(左右子树的高度差,大小为1或者0是平衡的,大小大于1不平衡)
    public int getBalanceFactor(){
        return getBalanceFactor(root);
    }
    public int getBalanceFactor(Node node){
        if(node == null) return 0;
        return getHeight(node.left) - getHeight(node.right);
    }
    //判断一个树是否是一个平衡二叉树
    public boolean isBalance(Node node){
        if(node == null) return true;
        int balanceFactor = Math.abs(getBalanceFactor(node.left) - getBalanceFactor(node.right));
        if(balanceFactor > 1) return false;
        return isBalance(node.left) && isBalance(node.right);
    }
    public boolean isBalance(){
        return isBalance(root);
    }
    //中序遍历树
    private  void inPrevOrder(Node root){
        if(root == null) return;
        inPrevOrder(root.left);
        root.display();
        inPrevOrder(root.right);
    }
    public void inPrevOrder(){
        System.out.print("中序遍历:");
        inPrevOrder(root);
    }
}

RR(左旋)

往一个树右子树的右子树上插入一个节点,导致二叉树变得不在平衡,如下图,往平衡二叉树中插入5,导致这个树变得不再平衡,此时需要左旋操作,如下:

代码如下:

//左旋,并且返回新的根节点
    public Node leftRotate(Node node){
        System.out.println("leftRotate");
       Node cur = node.right;
       node.right = cur.left;
       cur.left = node;
       //跟新node和cur的高度
        node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1;
        cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1;
        return cur;
    }

LL(右旋)

往一个AVL树左子树的左子树上插入一个节点,导致二叉树变得不在平衡,如下图,往平衡二叉树中插入2,导致这个树变得不再平衡,此时需要左旋操作,如下:

代码如下:

 //右旋,并且返回新的根节点
    public Node rightRotate(Node node){
        System.out.println("rightRotate");
        Node cur = node.left;
        node.left = cur.right;
        cur.right = node;
        //跟新node和cur的高度
        node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1;
        cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1;
        return cur;
    }

LR(先左旋再右旋)

往AVL树左子树的右子树上插入一个节点,导致该树不再平衡,需要先对左子树进行左旋,再对整棵树右旋,如下图所示,插入节点为5.

RL(先右旋再左旋)

往AVL树右子树的左子树上插入一个节点,导致该树不再平衡,需要先对右子树进行右旋,再对整棵树左旋,如下图所示,插入节点为2.

添加节点

//添加元素
    public  void add(E e){
        root = add(root,e);
    }
    public Node add(Node node, E value) {
        if (node == null) {
            size++;
            return new Node(value);
        }
        if (value.compareTo(node.value) > 0) {
            node.right = add(node.right, value);
        } else if (value.compareTo(node.value) < 0) {
            node.left = add(node.left, value);
        }
        //跟新节点高度
        node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1;
        //获取当前节点的平衡因子
        int balanceFactor = getBalanceFactor(node);
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的左子树上,此时需要进行右旋
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
            return rightRotate(node);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋
        else if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
            return leftRotate(node);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的右子树上,此时需要先对左子树左旋,在整个树右旋
        else if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }
        //balanceFactor < -1 && getBalanceFactor(node.left) > 0
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋
        else if(balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }
        return node;
    }

删除节点

 //删除节点
    public E remove(E value){
        root = remove(root,value);
        if(root == null){
            return null;
        }
        return root.value;
    }
    public Node remove(Node node, E value){
        Node retNode = null;
        if(node == null)
            return retNode;
        if(value.compareTo(node.value) > 0){
            node.right = remove(node.right,value);
            retNode = node;
        }
        else if(value.compareTo(node.value) < 0){
            node.left = remove(node.left,value);
            retNode = node;
        }
        //value.compareTo(node.value) = 0
        else{
            //左右节点都为空,或者左节点为空
            if(node.left == null){
                size--;
                retNode = node.right;
            }
            //右节点为空
            else if(node.right == null){
                size--;
                retNode = node.left;
            }
            //左右节点都不为空
            else{
                Node successor = new Node();
                //寻找右子树最小的节点
                Node cur = node.right;
                while(cur.left != null){
                    cur = cur.left;
                }
                successor.value  = cur.value;
                successor.right = remove(node.right,value);
                successor.left = node.left;
                node.left =  node.right = null;
                retNode = successor;
            }
            if(retNode == null)
                return null;
            //维护二叉树平衡
            //跟新height
            retNode.height = Math.max(getHeight(retNode.left),getHeight(retNode.right));
        }
        int balanceFactor = getBalanceFactor(retNode);
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的左子树上,此时需要进行右旋
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
            return rightRotate(retNode);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋
        else if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
            return leftRotate(retNode);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的右子树上,此时需要先对左子树左旋,在整个树右旋
        else if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋
        else if(balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }
        return  retNode;
    }

到此这篇关于Java深入分析了解平衡二叉树的文章就介绍到这了,更多相关Java平衡二叉树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • jvm双亲委派 vs 破坏双亲委派理解加载器的权责分配

    jvm双亲委派 vs 破坏双亲委派理解加载器的权责分配

    这篇文章主要为大家介绍了jvm双亲委派 vs 破坏双亲委派对比来理解加载器的权责分配,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • SpringBoot Security安装配置及Thymeleaf整合

    SpringBoot Security安装配置及Thymeleaf整合

    这篇文章主要介绍了SpringBoot Security安装配置及Thymeleaf整合,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-12-12
  • Spring Boot与Kotlin 整合全文搜索引擎Elasticsearch的示例代码

    Spring Boot与Kotlin 整合全文搜索引擎Elasticsearch的示例代码

    本篇文章主要介绍了Spring Boot与Kotlin 整合全文搜索引擎Elasticsearch的示例代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • java服务自动停止原因查找方式

    java服务自动停止原因查找方式

    这篇文章主要介绍了java服务自动停止原因查找方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-12-12
  • Java LinkedHashMap深入分析源码

    Java LinkedHashMap深入分析源码

    大多数情况下,只要不涉及线程安全问题,Map基本都可以使用HashMap,不过HashMap有一个问题,就是迭代HashMap的顺序并不是HashMap放置的顺序,也就是无序。HashMap的这一缺点往往会带来困扰,所以LinkedHashMap就闪亮登场了,这篇文章通过源码解析带你了解LinkedHashMap
    2022-11-11
  • java安全停止线程的方法详解

    java安全停止线程的方法详解

    这篇文章主要介绍了java安全停止线程的方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • Springboot读取配置文件及自定义配置文件的方法

    Springboot读取配置文件及自定义配置文件的方法

    这篇文章主要介绍了Springboot读取配置文件及自定义配置文件的方法,非常不错,具有参考借鉴价值,需要的朋友可以参考下
    2017-12-12
  • MAC上IntelliJ IDEA的svn无法保存密码解决方案

    MAC上IntelliJ IDEA的svn无法保存密码解决方案

    今天小编就为大家分享一篇关于MAC上IntelliJ IDEA的svn无法保存密码解决方案,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-10-10
  • SpringBoot org.springframework.beans.factory.UnsatisfiedDependencyException依赖注入异常

    SpringBoot org.springframework.beans.factory.Unsatisfie

    本文主要介绍了SpringBoot org.springframework.beans.factory.UnsatisfiedDependencyException依赖注入异常,文中通过示例代码介绍的很详细,具有一定的参考价值,感兴趣的可以了解一下
    2024-02-02
  • Java Builder模式构建MAP/LIST的实例讲解

    Java Builder模式构建MAP/LIST的实例讲解

    下面小编就为大家带来一篇Java Builder模式构建MAP/LIST的实例讲解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10

最新评论