pandas中提取DataFrame某些列的一些方法

 更新时间:2022年06月06日 10:18:45   作者:宁萌Julie  
dataframe是pandas包的重要对象,熟练掌握dataframe的基本操作是很有必要的,下面这篇文章主要给大家介绍了关于pandas中提取DataFrame某些列的一些方法,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

前言

在处理表格型数据时,一行数据是一个 sample,列就是待提取的特征。怎么选取其中的一些列呢?本文分享一些方法。

使用如下的数据作为例子:

import pandas as pd
data = pd.DataFrame({'Name':['Anna', 'Betty', 'Richard', 'Philip','Paul'],
        'course1':[85,83,90,84,85],
        'course2':[90,85,83,88,84],
        'course3':[82,86,81,91,85],
        'fruit':['apple','banana','apple','orange','peach'],
        'sport':['basketball', 'volleyball', 'football', 'basketball','baseball']},
         index=[1,2,3,4,5])
  
df = pd.DataFrame(data)
df
 Namecourse1course2course3fruitsport
1Anna859082applebasketball
2Betty838586bananavolleyball
3Richard908381applefootball
4Philip848891orangebasketball
5Paul858485peachbaseball

方法一:df[columns]

先看最简单的情况。输入列名,选择一列。例如:

df['course2']
1    90
2    85
3    83
4    88
5    84
Name: course2, dtype: int64

df[column list]:选择列。例如:

df[['course2','fruit']]
 course2fruit
190apple
285banana
383apple
488orange
584peach

或者以 column list (list 变量)的形式导入到 df[ ] 中,例如:

select_cols=['course2','fruit']
df[select_cols]
 course2fruit
190apple
285banana
383apple
488orange
584peach

可以用 column list=df.columns[start:end] 的方式选择连续列,start 和 end 均为数字,不包括 end 列。例如:

select_cols=df.columns[1:4]
df[select_cols]
 course1course2course3
1859082
2838586
3908381
4848891
5858485

你可能注意到,其中有 3 列的名字相近:‘course1’,‘course2’,‘course3’。怎么提取这三列呢?这里分享在Kaggle 上看到 一位大神使用的 list comprehension方法

select_cols=[c for c in df.columns if 'course' in c]
df[select_cols]
 course1course2course3
1859082
2838586
3908381
4848891
5858485

但是,如果你想输入df['course1':'course3'] 来索引连续列,就会报错。而输入数字索引df[1:3]时,结果不再是列索引,而是行索引,如下所示:

df[1:3]
 Namecourse1course2course3fruitsport
2Betty838586bananavolleyball
3Richard908381applefootball

以下两种方法 df.loc[]和df.iloc[]就可以解决这个问题,可以明确行或列索引。还可以同时取多行和多列。

方法二:df.loc[]:用 label (行名或列名)做索引。

输入 column_list 选择多列 [:, column_list],括号中第一个: 表示选择全部行。例如:

df.loc[:,['course2','fruit']]
 course2fruit
190apple
285banana
383apple
488orange
584peach

选择连续多列 [:,start_col: end_col],注意:包括 end_col。例如:

df.loc[:,'course2':'fruit']
 course2course3fruit
19082apple
28586banana
38381apple
48891orange
58485peach

选择多行和多列,例如:

df.loc[1:3,'course2':'fruit']
 course2course3fruit
19082apple
28586banana
38381apple

与 df[ ]类似,df.loc[ ]括号内也可以输入判断语句,结果是对行做筛选。例如:

df.loc[df['course1']>84]
#注:输入df[df['course1']>84],输出结果相同
 Namecourse1course2course3fruitsport
1Anna859082applebasketball
3Richard908381applefootball
5Paul858485peachbaseball

方法三:df.iloc[]: i 表示 integer,用 integer location(行或列的整数位置,从0开始)做索引。

df.iloc与df.loc用法类似,只是索引项不同。

df.iloc[:,[2,4]]
 course2fruit
190apple
285banana
383apple
488orange
584peach

选择连续多列:df.iloc[:, start_ix:end_ix],注意:不包括 end_ix。例如:

df.iloc[:,2:5]
 course2course3fruit
19082apple
28586banana
38381apple
48891orange
58485peach

选择多行与多列,例如:

df.iloc[1:3,[2,4]]
 course2fruit
285banana
383apple

与 df.loc[] 不同,df.iloc[] 括号内不可以输入判断语句。

补充:提取所有列名中包含“线索”、“浏览”字段的列

import pandas as pd
 
path = 'F:\python_projects\python_learning\ershouche.csv'
df = pd.read_csv(open(path), index_col=0)
df = df.fillna(0)  # 填充空值后需赋值
print(df.describe())
 
columns = df.columns.values.tolist()  # 获取列名列表,注意values,tolist的使用
col_xian = []  # 存储包含‘线索'字段的列名
for i in columns:
    if '线索' in i:
        col_xian.append(i)
 
col_liu = [] # 存储包含‘浏览'字段的列名
for i in columns:
    if '浏览' in i:
        col_liu.append(i)
 
df_xian = df[col_xian]  # 根据列名取列
df_liu = df[col_liu]

参考:

1.如何选取dataframe的多列-教程:https://www.geeksforgeeks.org/how-to-select-multiple-columns-in-a-pandas-dataframe/

2.用 list comprehension 选择多列:https://www.kaggle.com/code/robikscube/ieee-fraud-detection-first-look-and-eda/notebook

3.df.loc 与 df.iloc 的比较:https://stackoverflow.com/questions/31593201/how-are-iloc-and-loc-different

总结

到此这篇关于pandas中提取DataFrame某些列的文章就介绍到这了,更多相关pandas提取DataFrame某些列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python使用pyppeteer进行网页截图并发送机器人实例

    Python使用pyppeteer进行网页截图并发送机器人实例

    这篇文章主要介绍了Python使用pyppeteer进行网页截图并发送机器人实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-04-04
  • django使用html模板减少代码代码解析

    django使用html模板减少代码代码解析

    这篇文章主要介绍了django使用html模板减少代码代码解析,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Python调用百度根据经纬度查询地址的示例代码

    Python调用百度根据经纬度查询地址的示例代码

    今天小编就为大家分享一篇Python调用百度根据经纬度查询地址的示例代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python跳出多重循环的方法示例

    Python跳出多重循环的方法示例

    这篇文章主要介绍了Python跳出多重循环的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • 详解Python中键盘鼠标的相关操作

    详解Python中键盘鼠标的相关操作

    pyautogui模块,规范一点大写就是PyAutoGUI模块,是用来实现自动化脚本的一个十分得力的小助手。他可以操控键盘和鼠标,可以写许多工具。本文就来讲讲如何利用这个模块实现键盘鼠标的相关操作,需要的可以参考一下
    2023-01-01
  • Python在OpenCV里实现极坐标变换功能

    Python在OpenCV里实现极坐标变换功能

    这篇文章主要介绍了在OpenCV里实现极坐标变换功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • python django框架中使用FastDFS分布式文件系统的安装方法

    python django框架中使用FastDFS分布式文件系统的安装方法

    这篇文章主要介绍了python-django框架中使用FastDFS分布式文件系统的安装方法,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-06-06
  • python 如何通过KNN来填充缺失值

    python 如何通过KNN来填充缺失值

    这篇文章主要介绍了python 通过KNN来填充缺失值的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • 详解如何列出已安装的Python包

    详解如何列出已安装的Python包

    处理 Python 项目可能需要列出已安装的 Python 包,以便管理依赖项、检查更新或与其他人共享项目需求,在这篇文章中,我们将研究多种用于列出系统上安装的 Python 包的技术
    2023-10-10
  • Python爬虫代理IP池实现方法

    Python爬虫代理IP池实现方法

    在公司做分布式深网爬虫,搭建了一套稳定的代理池服务,为上千个爬虫提供有效的代理,保证各个爬虫拿到的都是对应网站有效的代理IP,从而保证爬虫快速稳定的运行,所以就想利用一些免费的资源搞一个简单的代理池服务。
    2017-01-01

最新评论